Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 10(10): 3453-3461, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36249960

ABSTRACT

The increasing implication of plantain flour in various food formulations calls for the need to evaluate the effects of ripening stage, packaging materials, and storage duration on its proximal composition and functional properties. For this study, plantain flours were produced from the cultivar Alloga at unripe and semiripe stage 3. They were stored both in transparent polyethylene bags and in an opaque aluminum foil. Physicochemical analyses and functional characterization of the plantain flour were performed on samples taken prior to storage and on monthly basis for 6 months during storage. Ash and carbohydrate contents decreased while the yellowness and redness increased with ripening. Pasting viscosity drastically decreased with ripening. During storage, significant differences in color and among most functional characteristics were observed as a consequence of both storage duration and packaging materials. Based on this research, flour from semiripe plantain could be recommended for use in formulations requiring low viscosity. Besides, it is suggested to store plantain flours in opaque containers to reduce the variability in its properties, thus maintaining its original quality.

2.
Crit Rev Food Sci Nutr ; 54(5): 673-86, 2014.
Article in English | MEDLINE | ID: mdl-24261539

ABSTRACT

Increasing demand of shea products (kernels and butter) has led to the assessment of the state-of-the-art of these products. In this review, attention has been focused on macronutrients and micronutrients of pulp, kernels, and butter of shea tree and also the physicochemical properties of shea butter. Surveying the literature revealed that the pulp is rich in vitamin C (196.1 mg/100 g); consumption of 50 g covers 332% and 98% of the recommended daily intake (RDI) of children (4-8 years old) and pregnant women, respectively. The kernels contain a high level of fat (17.4-59.1 g/100 g dry weight). Fat extraction is mainly done by traditional methods that involve roasting and pressing of the kernels, churning the obtained liquid with water, boiling, sieving, and cooling. The fat (butter) is used in food preparation and medicinal and cosmetics industries. Its biochemical properties indicate some antioxidant and anti-inflammatory activities. Large variations are observed in the reported values for the composition of shea products. Recommendations for future research are presented to improve the quality and the shelf-life of the butter. In addition, more attention should be given to the accuracy and precision in experimental analyses to obtain more reliable information about biological variation.


Subject(s)
Nutritive Value , Nuts/chemistry , Oleic Acids/analysis , Plant Oils/analysis , Chemical Phenomena , Fatty Acids/analysis , Micronutrients/analysis , Triglycerides/analysis
3.
Ecol Food Nutr ; 51(6): 505-25, 2012.
Article in English | MEDLINE | ID: mdl-23082921

ABSTRACT

A survey among 246 people belonging to 14 ethnic groups and living in 5 different parklands in Benin revealed different practices to process shea kernels (namely boiling followed sun drying and smoking) and extract shea butter. A relation between parklands, gathering period, and sun-drying conditions was established. Moisture content and appearance of kernels were the selection criteria for users of shea kernels; color was the main characteristic to buy butter. Constraints to be solved are long processing times, lack of milling equipment and high water requirements. Best practices for smoking, sun drying, and roasting operations need to be established for further improvement.


Subject(s)
Ethnobotany , Health Knowledge, Attitudes, Practice , Plant Preparations , Sapotaceae , Seeds , Benin , Color , Commerce , Consumer Behavior , Cooking , Data Collection , Desiccation , Female , Humans , Male , Smoke , Water
4.
J Food Sci Technol ; 48(3): 274-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-23572746

ABSTRACT

Storage conditions are key constraints for quality assurance of the shea (Vitellaria paradoxa Gaertner) butter. In the Sudan savannah Africa, storage conditions of butter produced by women vary across and among processors, traders and consumers. These conditions could impact the quality of the products and reduced their access to international market. The present study attempted to investigate the effect of storage duration and packaging materials on microbiological and physicochemical characteristics of shea butter under tropical climatic conditions. Five packaging materials traditionally used in shea butter value chain were tested for their efficacy in storing shea butter freshly produced. Total germs, yeasts and mould varied with packaging materials and storage duration. After 2 months of storage, moisture content of butter remained constant (5%) whereas acid value increased from 3.3 to 5.4 mg KOH/g, peroxide value from 8.1 to 10.1 meq O2/kg and iodine value dropped from 48.8 to 46.2 mg I2/100 g in shea butter irrespectively to the storage materials used. The basket papered with jute bag was the less effective in ensuring the quality of butter during storage while plastic containers and plastic bags seemed to be the best packaging materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...