Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Main subject
Publication year range
1.
Materials (Basel) ; 16(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110026

ABSTRACT

In this study, we synthesized NaYF4-based downshifting nanophosphors (DSNPs), and fabricated DSNP-polydimethylsiloxane (PDMS) composites. Nd3+ ions were doped into the core and shell to increase absorbance at 800 nm. Yb3+ ions were co-doped into the core to achieve intense near-infrared (NIR) luminescence. To further enhance the NIR luminescence, NaYF4:Nd,Yb/NaYF4:Nd/NaYF4 core/shell/shell (C/S/S) DSNPs were synthesized. The C/S/S DSNPs showed a 3.0-fold enhanced NIR emission at 978 nm compared with core DSNPs under 800 nm NIR light. The synthesized C/S/S DSNPs showed high thermal stability and photostability against the irradiation with ultraviolet light and NIR light. Moreover, for application as luminescent solar concentrators (LSCs), C/S/S DSNPs were incorporated into the PDMS polymer, and the DSNP-PDMS composite containing 0.25 wt% of C/S/S DSNP was fabricated. The DSNP-PDMS composite showed high transparency (average transmittance = 79.4% for the visible spectral range of 380-750 nm). This result demonstrates the applicability of the DSNP-PDMS composite in transparent photovoltaic modules.

2.
Sci Rep ; 12(1): 17595, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36266448

ABSTRACT

In this study, heavy-metal-free orange light-emitting ZnSe:Mn2+/ZnS doped-core/shell (d-C/S) quantum dots (QDs) were synthesized using a nucleation doping strategy. To synthesize high quality d-C/S QDs with high photoluminescence (PL) quantum yield (QY), the Mn2+ concentration was optimized. The resulting ZnSe:Mn2+(5%)/ZnS d-C/S QDs showed a high PL QY of 83.3%. The optical properties of the synthesized QDs were characterized by absorption and PL spectroscopy. Their structural and compositional properties were studied by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. After doping Mn2+ into a ZnSe core, the ZnSe:Mn2+/ZnS d-C/S QDs showed a large Stokes shift of 170 nm. The ZnSe:Mn2+/ZnS d-C/S QDs were embedded in a poly(lauryl methacrylate) (PLMA) polymer matrix and the ZnSe:Mn2+/ZnS-based polymer film was fabricated. The fabricated ZnSe:Mn2+/ZnS-PLMA film was highly transparent in the visible spectral region (transmittance > 83.8% for λ ≥ 450 nm) and it exhibited bright orange light under air mass (AM) 1.5G illumination using a solar simulator. The optical path-dependent PL measurement of the ZnSe:Mn2+/ZnS-PLMA film showed no PL band shift and minimal PL decrease under variation of excitation position. These results indicate that the highly efficient and large Stokes shift-emitting ZnSe:Mn2+/ZnS QDs are promising for application to luminescent solar concentrators.

3.
Adv Mater ; 34(5): e2106225, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34796554

ABSTRACT

A super-boosted hybrid plasmonic upconversion (UC) architecture comprising a hierarchical plasmonic upconversion (HPU) film and a polymeric microlens array (MLA) film is proposed for efficient photodetection at a wavelength of 1550 nm. Plasmonic metasurfaces and Au core-satellite nanoassembly (CSNA) films can strongly induce a more effective plasmonic effect by providing numerous hot spots in an intense local electromagnetic field up to wavelengths exceeding 1550 nm. Hence, significant UC emission enhancement is realized via the amplified plasmonic coupling of an HPU film comprising an Au CSNA and UC nanoparticles. Furthermore, an MLA polymer film is synergistically coupled with the HPU film, thereby focusing the incident near-infrared light in the micrometer region, including the plasmonic nanostructure area. Consequently, the plasmonic effect super-boosted by microfocusing the incident light, significantly lowers the detectable power limit of a device, resulting in superior sensitivity and responsivity at weak excitation powers. Finally, a triple-cation perovskite-based photodetector coupled with the hybrid plasmonic UC film exhibits the excellent values of responsivity and detectivity of 9.80 A W-1 and 8.22 × 1012 Jones at a weak power density of ≈0.03 mW cm-2 , respectively, demonstrating that the device performance is enhanced by more than 104 magnitudes over a reference sample.

4.
Nano Lett ; 21(11): 4838-4844, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34038139

ABSTRACT

Here, excitation orthogonalized red/green/blue upconversion luminescence (UCL)-based full-color tunable rare-earth (RE) ion-doped upconversion nanophosphors (UCNPs) are reported. The LiREF4-based core/sextuple-shell (C/6S) UCNPs are synthesized, and they consist of a blue-emitting core, green-emitting inner shell, and red-emitting outer shell, with inert intermediate and outermost shells. The synthesized C/6S UCNPs emit blue, green, and red light under 980, 800, and 1532 nm, respectively. Importantly, by combining incident near-infrared (NIR) light with various wavelengths (800, 980, and 1532 nm), full-color UCL including blue, cyan, green, yellow, orange, red, purple, and white UCL is achieved from the single C/6S UCNP composition. The color gamut obtained from the C/6S UCNPs shows 101.6% of the sRGB standard color gamut. Furthermore, transparent C/6S UCNP-polydimethylsiloxane (PDMS) composite is prepared. Full-color display realized in the transparent C/6S UCNP-PDMS composite indicates the feasibility of constructing the C/6S UCNP-based three-dimensional volumetric displays with wide color gamut.

5.
Materials (Basel) ; 13(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255745

ABSTRACT

In this study, Li-based blue- and green-emitting core@shell (C@S) upconversion nanophosphors (UCNPs) and NaGdF4-based red-emitting C@S UCNPs were synthesized, and IR-808 dyes were conjugated with the C@S UCNPs to enhance upconversion (UC) luminescence. The surface of the as-synthesized C@S UCNPs, which was originally capped with oleic acid, was modified with BF4- to conjugate the IR-808 dye having a carboxyl functional group to the surface of the UCNPs. After the conjugation with IR-808 dyes, absorbance of the UCNPs was significantly increased. As a result, dye-sensitized blue (B)-, green (G)-, and red (R)-emitting UCNPs exhibited 87-fold, 10.8-fold, and 110-fold enhanced UC luminescence compared with B-, G-, and R-emitting Nd3+-doped C@S UCNPs under 800 nm near-infrared (NIR) light excitation, respectively. Consequently, dye-sensitized UCNPs exhibiting strong UC luminescence under 800 nm NIR light excitation have high applicability in a variety of biological applications.

6.
ACS Appl Mater Interfaces ; 10(15): 12331-12340, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29546978

ABSTRACT

In this study, intense single-band red-emitting upconversion nanophosphors (UCNPs) excited with 800 nm near-infrared (NIR) light are reported. When a NaYF4:Nd,Yb active-shell is formed on the 12.7 nm sized NaGdF4:Yb,Ho,Ce UCNP core, the core/shell (C/S) UCNPs show tunable emission from green to red, depending on the Ce3+ concentration under excitation with 800 nm NIR light. Ce3+-doped C/S UCNPs (30 mol %) exhibit single-band red emission peaking at 644 nm via a 5F5 → 5I8 transition of Ho3+. A high Nd3+ concentration in the shell results in strong absorption at around 800 nm NIR light, even though the shell thickness is not large, and small-sized C/S UCNPs (16.3 nm) emit bright red light under 800 nm excitation. The formation of a thin NaGdF4 shell on the C/S UCNPs further enhances the upconversion (UC) luminescence and sub-20 nm sized core/double-shell (C/D-S) UCNPs exhibit 2.8 times stronger UC luminescence compared with C/S UCNPs. Owing to the strong UC luminescence intensity and Gd3+ ions on the surface of nanocrystals, they can be applied as a UC luminescence imaging agent and a T1 contrast agent for magnetic resonance (MR) imaging. In vivo UC luminescence and high-contrast MR images are successfully obtained by utilizing the red-emitting C/D-S UCNPs.


Subject(s)
Nanoparticles , Light , Luminescence , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
7.
Sci Rep ; 7: 45659, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28368021

ABSTRACT

Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.

8.
ACS Appl Mater Interfaces ; 9(12): 11224-11230, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28271710

ABSTRACT

Colloidal quantum dots (QDs) are attractive candidates for future lighting technology. However, in contrast to display applications, the realization of balanced white lighting devices remains conceptually challenging. Here, we demonstrate two-component white light-emitting QD-LEDs with high color rendering indices (CRI) up to 78. The implementation of orange CuInS2/ZnS (CIS/ZnS) QDs with a broad emission and high quantum yield together with blue ZnCdSe/ZnS QDs in a mixed approach allowed white light emission with low blue QD content. The devices reveal only a small color drift in a wide operation voltage range. The correlated color temperature (CCT) could be adjusted between 2200 and 7200 K (from warm white to cold white) by changing the volume ratio between orange and blue QDs (1:0.5 and 1:2).

9.
Opt Lett ; 40(21): 4959-62, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26512493

ABSTRACT

The core/shell-structured upconversion nanophosphors (UCNPs) and Cd-free CuInS(2)/ZnS quantum dots (QDs) were synthesized via coprecipitation and hot-injection methods, respectively, and they were applied to near infrared (NIR) photodetectors. The ß-NaYF(4):Yb,Er/ß-NaYF(4) UCNPs emitted intense visible light peaking at 522, 542, and 656 nm via (2)H(11/2), (4)S(3/2), and (4)F(9/2)→(4)I(15/2) transitions under excitation with 980 nm NIR light. The core/shell UCNPs showed 6.4 times higher emission intensity than core UCNPs. Charge carriers can be generated from CuInS(2)/ZnS QDs in the QD-UCNP mixture due to their broad absorption in the visible spectral region shorter than 600 nm. The photodetector devices were fabricated by spin-coating CuInS(2)/ZnS QDs on a SiO(2)/Si substrate with patterned gold electrodes followed by spin-coating UCNPs on the QD layer. The fabricated QD-UCNP-bilayer-based device showed a drastically increased photocurrent (128 µA) compared with the QD-layer-based device under 980 nm NIR light illumination. Additionally, the fabricated device showed stable ON-OFF switching properties against on and off NIR light.

10.
ACS Appl Mater Interfaces ; 4(6): 3300-7, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22670766

ABSTRACT

The development of a simple and reliable method for nanoparticles-based ink in an aqueous solution is still a challenge for its inkjet printing application. Herein, we demonstrate the inkjet printing of fractal-aggregated silver (Ag) electrode lines on substrates. Spherical, monodisperse Ag nanoparticles have been synthesized using silver nitrate as a precursor, ethylene glycol as a reducing agent, and polyvinyl pyrrollidone as a capping agent. As-synthesized pure Ag nanoparticles were well dispersed in water-ethylene glycol mixture, which was directly used as an ink for inkjet printing. Using this ink, the Ag electrodes of fractal-connected lines were printed on Si/SiO2, glass, and polymer substrates. The fractal-connected Ag lines were attributed to the diffusion-limited aggregation of Ag nanoparticles and the effect of annealing on conductivity was also examined.

SELECTION OF CITATIONS
SEARCH DETAIL
...