Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phycol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935837

ABSTRACT

Mechanical damage to a cell can be fatal, and the cell must reseal its membrane and restore homeostasis to survive. Plant cell repair involves additional steps such as rebuilding vacuoles, rearranging chloroplasts, and remodeling the cell wall. When we pierced a Griffithsia monilis cell with a glass needle, a large amount of intracellular contents was released, but the cell membrane resealed in less than a second. The turgor of the vacuole was quickly restored, and the punctured cell returned to its original shape within an hour. Organelles such as chloroplasts and nuclei migrated to the wound site for 12 h and then dispersed throughout the cell after the wound was covered by a new cell wall. Using fluorescent probes, high levels of reactive oxygen species (ROS) and calcium were detected at the wound site from 3 h after wounding, which disappeared when cell repair was complete. Wounding in a solution containing ROS scavengers inhibited cellular repair, and inhibiting nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity or blocking calcium influx reversibly inhibited cell repair. Oryzalin reversibly inhibited both chloroplast movement and ROS production during cell repair. Our results show that cell repair in G. monilis is regulated by calcium-mediated ROS signaling and that microtubules serve as mechanical effectors.

2.
Cells ; 11(13)2022 07 05.
Article in English | MEDLINE | ID: mdl-35805208

ABSTRACT

In many filamentous red algae, cells that die from physical damage are replaced through somatic fusion of repair cells formed from adjacent cells. We visualized ROS generation in repair cells of Giriffthsia monilis using DCFH-DA staining and examined the expression of the genes involved in wound healing using quantitative PCR. Repair cells elongate along the H2O2 gradient, meet at each other's tips where the H2O2 concentration is highest, and undergo somatic fusion. No wound response occurred with ascorbic acid treatment. Conversely, H2O2 treatment induced many repair cells, leading to multiple somatic cell fusions. Diphenylene iodonium (DPI) or caffeine treatment reversibly inhibited ROS production in repair cells and blocked the progression of the wound response suggesting that ROS and calcium signaling are involved in the process. Four G. monilis homologues of NADPH-oxidase (GmRBOHs) were identified. The expression of GmRBOHs was upregulated upon injury, peaking 1 h post injury, and decreasing to initial levels when repair cells began to elongate. Our results suggest that ROS generated upon cell injury activates Ca2+ channels and upregulates the expression of GmRBOHs, and that H2O2 generated from repair cells mediates induced repair cell elongation leading to somatic cell fusion and filament repair.


Subject(s)
Hydrogen Peroxide , Rhodophyta , Calcium Signaling , Cell Fusion , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species/metabolism , Rhodophyta/metabolism
3.
Adv Sci (Weinh) ; 9(8): e2105528, 2022 03.
Article in English | MEDLINE | ID: mdl-35072365

ABSTRACT

Liquid-repellent technology is an efficient means of energy-saving and biofouling avoidance. However, liquid-repellent surfaces suffer from inefficient lubricant retention under shear flow and fouling problem in marine environment. Here, the authors demonstrate a fatty acid amide (FAA)-based oleogel for stable and sustainable lubrication in marine environment. The lubrication management of marine creatures is emulated in synthetic oleogels by incorporating solid (FAA) and liquid lubricants into the molecular meshes of polymeric networks, with the nature-derived solid lubricant providing multifunctional synergistic effects with liquid oil molecules for slippery property and remarkable anti-biofouling. The lubricant-confining gel achieves shear-stable lubricity with efficient oil management. The oleogel provides continued lubrication without biofouling for approximately 4 months in marine field tests. The gel design provides a new paradigm for sustainable and shear-stable lubrication in marine environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...