Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 324: 117809, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38266946

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sea buckthorn (Hippophae rhamnoides L.) is an edible fruit with a long history in China as a medicinal plant. The fruits of H. rhamnoides are rich in a variety of nutrients and pharmacological active compounds. As one of the most important active ingredients in sea buckthorn, polysaccharides have attracted the attention of researchers due to their antioxidant, anti-fatigue, and liver protective qualities. AIM OF THE REVIEW: This review summarizes recent studies on extraction, purification, structural characterization and pharmacological activities of polysaccharides from sea buckthorn. In addition, the relationship between the structure and the activities of sea buckthorn polysaccharides (SBPS) were discussed. This review would provide important research bases and up-to-date information for the future in-depth development and application of sea buckthorn polysaccharides in the field of pharmaceuticals and functional foods. MATERIALS AND METHODS: By inputting the search term "Sea buckthorn polysaccharides", relevant research information was obtained from databases such as Web of Science, Google Scholar, PubMed, China Knowledge Network (CNKI), China Master Theses Full-text Database, and China Doctoral Dissertations Full-text Database. RESULTS: The main extraction methods of SBPS include hot water extraction (HWE), ultrasonic assisted extraction (UAE), microwave-assisted extraction (MAE), flash extraction (FE), and ethanol extraction. More than 20 polysaccharides have been isolated from sea buckthorn fruits. The chemical structures of sea buckthorn polysaccharides obtained by different extraction, isolation, and purification methods are diverse. Polysaccharides from sea buckthorn display a variety of pharmacological properties, including antioxidant, anti-fatigue, liver protection, anti-obesity, regulation of intestinal flora, immunoregulation, anti-tumor, anti-inflammatory, and hypoglycemic activities. CONCLUSIONS: Sea buckthorn has a long medicinal history and characteristics of an ethnic medicine and food. Polysaccharides are one of the main active components of sea buckthorn, and they have received increasing attention from researchers. Sea buckthorn polysaccharides have remarkable pharmacological activities, health benefits, and broad application prospects. In addition, further exploration of the chemical structure of SBPS, in-depth study of their pharmacological activities, identification of their material basis, characterization of disease resistance mechanisms, and potential health functions are still directions of future research. With the accumulation of research on the extraction and purification processes, chemical structure, pharmacological effects, molecular mechanisms, and structure-activity relationships, sea buckthorn polysaccharides derived from natural resources will ultimately make significant contributions to human health.


Subject(s)
Hippophae , Humans , Hippophae/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/analysis , Fruit/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/analysis , Plant Extracts/pharmacology
2.
Int J Biol Macromol ; 254(Pt 1): 127705, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37913884

ABSTRACT

A new homogeneous polysaccharide (TPS3A) was isolated and purified from Tianzhu Xianyue fried green tea by DEAE-52 cellulose and Sephacryl S-500 column chromatography. Structural characterization indicated that TPS3A mainly consisted of arabinose, galactose, galacturonic acid and rhamnose in a molar ratio of 5.84: 4.15: 2.06: 1, with an average molecular weight of 1.596 × 104 kDa. The structure of TPS3A was characterized as a repeating unit consisting of 1,3-Galp, 1,4-Galp, 1,3,6-Galp, 1,3-Araf, 1,5-Araf, 1,2,4-Rhap and 1-GalpA, with two branches on the C6 of 1,3,6-Galp and C2 of 1,2,4-Rhap, respectively. To investigate the preventive effects of TPS3A on atherosclerosis, TPS3A was administered orally to ApoE-deficient (ApoE-/-) mice. Results revealed that TPS3A intervention could effectively delay the atherosclerotic plaque progression, modulate dyslipidemia, and reduce the transformation of vascular smooth muscle cells (VSMCs) from contractile phenotype to synthetic phenotype by activating the expression of contractile marker alpha-smooth muscle actin (α-SMA) and inhibiting the expression of synthetic marker osteopontin (OPN) in high-fat diet-induced ApoE-/- mice. Our findings suggested that TPS3A markedly alleviated atherosclerosis by regulating dyslipidemia and phenotypic transition of VSMCs, and might be used as a novel functional ingredient to promote cardiovascular health.


Subject(s)
Atherosclerosis , Dyslipidemias , Animals , Mice , Tea , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/analysis , Atherosclerosis/drug therapy , Apolipoproteins E
3.
Front Neurorobot ; 17: 1270860, 2023.
Article in English | MEDLINE | ID: mdl-37915952

ABSTRACT

Introduction: Autonomous mobile robot encompasses modules such as perception, path planning, decision-making, and control. Among these modules, path planning serves as a prerequisite for mobile robots to accomplish tasks. Enhancing path planning capability of mobile robots can effectively save costs, reduce energy consumption, and improve work efficiency. The primary slime mold algorithm (SMA) exhibits characteristics such as a reduced number of parameters, strong robustness, and a relatively high level of exploratory ability. SMA performs well in path planning for mobile robots. However, it is prone to local optimization and lacks dynamic obstacle avoidance, making it less effective in real-world settings. Methods: This paper presents an enhanced SMA (ESMA) path-planning algorithm for mobile robots. The ESMA algorithm incorporates adaptive techniques to enhance global search capabilities and integrates an artificial potential field to improve dynamic obstacle avoidance. Results and discussion: Compared to the SMA algorithm, the SMA-AGDE algorithm, which combines the Adaptive Guided Differential Evolution algorithm, and the Lévy Flight-Rotation SMA (LRSMA) algorithm, resulted in an average reduction in the minimum path length of (3.92%, 8.93%, 2.73%), along with corresponding reductions in path minimum values and processing times. Experiments show ESMA can find shortest collision-free paths for mobile robots in both static and dynamic environments.

4.
J Agric Food Chem ; 71(16): 6468-6479, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37043685

ABSTRACT

Osteocalcin was reported to regulate muscle energy metabolism, thus fighting fatigue during exercise. The current work aimed to investigate the anti-fatigue effect and the underlying mechanism of a homogeneous polysaccharide (PCPY-1) from Polgonatum cyrtonema after structure characterization. In the exhaustive swimming mouse model and the co-culture system of BMSCs/C2C12 cells, PCPY-1 significantly stimulated BMSC differentiation into osteoblasts as determined by ALP activity, matrix mineralization, and the protein expressions of osteogenic markers BMP-2, phosphor-Smad1, RUNX2, and osteocalcin. Meanwhile, PCPY-1 remarkably enhanced myoblast energy metabolism by upregulating osteocalcin release and GPRC6A protein expression; the phosphorylation levels of CREB and HSL; the mRNA levels of GLUT4, CD36, FATP1, and CPT1B; and ATP production in vitro and in vivo. Accordingly, PCPY-1 exhibited good anti-fatigue capacity in mice as confirmed by fatigue-related indicators. Our findings indicated PCPY-1 could enhance osteocalcin-mediated communication between bones and muscles, which was conducive to muscle energy metabolism and ATP generation, thus alleviating fatigue in exhausted swimming mice.


Subject(s)
Polygonatum , Mice , Animals , Osteocalcin/genetics , Osteocalcin/metabolism , Cell Differentiation , Osteoblasts , Muscles/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Adenosine Triphosphate/metabolism , Receptors, G-Protein-Coupled/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...