Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1346068, 2024.
Article in English | MEDLINE | ID: mdl-38362501

ABSTRACT

Lymphatic filariasis and onchocerciasis are two major neglected tropical diseases that are responsible for causing severe disability in 50 million people worldwide, whilst veterinary filariasis (heartworm) is a potentially lethal parasitic infection of companion animals. There is an urgent need for safe, short-course curative (macrofilaricidal) drugs to eliminate these debilitating parasite infections. We investigated combination treatments of the novel anti-Wolbachia azaquinazoline small molecule, AWZ1066S, with benzimidazole drugs (albendazole or oxfendazole) in up to four different rodent filariasis infection models: Brugia malayi-CB.17 SCID mice, B. malayi-Mongolian gerbils, B. pahangi-Mongolian gerbils, and Litomosoides sigmodontis-Mongolian gerbils. Combination treatments synergised to elicit threshold (>90%) Wolbachia depletion from female worms in 5 days of treatment, using 2-fold lower dose-exposures of AWZ1066S than monotherapy. Short-course lowered dose AWZ1066S-albendazole combination treatments also delivered partial adulticidal activities and/or long-lasting inhibition of embryogenesis, resulting in complete transmission blockade in B. pahangi and L. sigmodontis gerbil models. We determined that short-course AWZ1066S-albendazole co-treatment significantly augmented the depletion of Wolbachia populations within both germline and hypodermal tissues of B. malayi female worms and in hypodermal tissues in male worms, indicating that anti-Wolbachia synergy is not limited to targeting female embryonic tissues. Our data provides pre-clinical proof-of-concept that sub-seven-day combinations of rapid-acting novel anti-Wolbachia agents with benzimidazole anthelmintics are a promising curative and transmission-blocking drug treatment strategy for filarial diseases of medical and veterinary importance.

2.
Int J Antimicrob Agents ; 59(3): 106542, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35093538

ABSTRACT

A key element for the prevention and management of coronavirus disease 2019 is the development of effective therapeutics. Drug combination strategies offer several advantages over monotherapies. They have the potential to achieve greater efficacy, to increase the therapeutic index of drugs and to reduce the emergence of drug resistance. We assessed the in vitro synergistic interaction between remdesivir and ivermectin, both approved by the US Food and Drug Administration, and demonstrated enhanced antiviral activity against severe acute respiratory syndrome coronavirus-2. Whilst the in vitro synergistic activity reported here does not support the clinical application of this combination treatment strategy due to insufficient exposure of ivermectin in vivo, the data do warrant further investigation. Efforts to define the mechanisms underpinning the observed synergistic action could lead to the development of novel treatment strategies.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Ivermectin/pharmacology , Ivermectin/therapeutic use
3.
Proc Natl Acad Sci U S A ; 110(49): 19766-71, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24248381

ABSTRACT

Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.


Subject(s)
Culicidae/enzymology , Cytochrome P-450 Enzyme System/metabolism , Insecticides/metabolism , Molecular Probes/metabolism , Pyrethrins/metabolism , Animals , Electrophoresis, Polyacrylamide Gel , Insecticide Resistance/physiology , Insecticides/chemistry , Liver/metabolism , Mice , Microarray Analysis , Molecular Structure , Pyrethrins/chemistry , Rats , Species Specificity
4.
Proc Natl Acad Sci U S A ; 109(21): 8298-303, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22566611

ABSTRACT

There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc(1). Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Pyridines/pharmacology , Quinolones/pharmacology , Animals , Antimalarials/chemistry , Cells, Cultured , Electron Transport/drug effects , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex III/antagonists & inhibitors , Hepatocytes/cytology , Hepatocytes/parasitology , Macaca mulatta , Malaria, Falciparum/parasitology , Male , Mice , Mice, Inbred Strains , Mitochondria/drug effects , Plasmodium berghei/drug effects , Plasmodium berghei/growth & development , Plasmodium cynomolgi/drug effects , Plasmodium cynomolgi/growth & development , Plasmodium falciparum/growth & development , Pyridines/chemistry , Quinolones/chemistry
5.
J Med Chem ; 55(7): 3144-54, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22380711

ABSTRACT

Malaria is responsible for approximately 1 million deaths annually; thus, continued efforts to discover new antimalarials are required. A HTS screen was established to identify novel inhibitors of the parasite's mitochondrial enzyme NADH:quinone oxidoreductase (PfNDH2). On the basis of only one known inhibitor of this enzyme, the challenge was to discover novel inhibitors of PfNDH2 with diverse chemical scaffolds. To this end, using a range of ligand-based chemoinformatics methods, ~17000 compounds were selected from a commercial library of ~750000 compounds. Forty-eight compounds were identified with PfNDH2 enzyme inhibition IC(50) values ranging from 100 nM to 40 µM and also displayed exciting whole cell antimalarial activity. These novel inhibitors were identified through sampling 16% of the available chemical space, while only screening 2% of the library. This study confirms the added value of using multiple ligand-based chemoinformatic approaches and has successfully identified novel distinct chemotypes primed for development as new agents against malaria.


Subject(s)
Antimalarials/chemistry , Databases, Factual , Plasmodium falciparum/enzymology , Protozoan Proteins/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Quinone Reductases/antagonists & inhibitors , Antimalarials/pharmacology , Bayes Theorem , High-Throughput Screening Assays , Informatics , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Principal Component Analysis , Protozoan Proteins/chemistry , Quinone Reductases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...