Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Res Sq ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37503119

ABSTRACT

The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.

2.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066421

ABSTRACT

The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.

3.
BMJ Open ; 12(10): e049657, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36223959

ABSTRACT

OBJECTIVES: The enormous toll of the COVID-19 pandemic has heightened the urgency of collecting and analysing population-scale datasets in real time to monitor and better understand the evolving pandemic. The objectives of this study were to examine the relationship of risk factors to COVID-19 susceptibility and severity and to develop risk models to accurately predict COVID-19 outcomes using rapidly obtained self-reported data. DESIGN: A cross-sectional study. SETTING: AncestryDNA customers in the USA who consented to research. PARTICIPANTS: The AncestryDNA COVID-19 Study collected self-reported survey data on symptoms, outcomes, risk factors and exposures for over 563 000 adult individuals in the USA in just under 4 months, including over 4700 COVID-19 cases as measured by a self-reported positive test. RESULTS: We replicated previously reported associations between several risk factors and COVID-19 susceptibility and severity outcomes, and additionally found that differences in known exposures accounted for many of the susceptibility associations. A notable exception was elevated susceptibility for men even after adjusting for known exposures and age (adjusted OR=1.36, 95% CI=1.19 to 1.55). We also demonstrated that self-reported data can be used to build accurate risk models to predict individualised COVID-19 susceptibility (area under the curve (AUC)=0.84) and severity outcomes including hospitalisation and critical illness (AUC=0.87 and 0.90, respectively). The risk models achieved robust discriminative performance across different age, sex and genetic ancestry groups within the study. CONCLUSIONS: The results highlight the value of self-reported epidemiological data to rapidly provide public health insights into the evolving COVID-19 pandemic.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , Cross-Sectional Studies , Humans , Male , Pandemics , Risk Factors , SARS-CoV-2
4.
Nat Genet ; 54(4): 374-381, 2022 04.
Article in English | MEDLINE | ID: mdl-35410379

ABSTRACT

Multiple COVID-19 genome-wide association studies (GWASs) have identified reproducible genetic associations indicating that there is a genetic component to susceptibility and severity risk. To complement these studies, we collected deep coronavirus disease 2019 (COVID-19) phenotype data from a survey of 736,723 AncestryDNA research participants. With these data, we defined eight phenotypes related to COVID-19 outcomes: four phenotypes that align with previously studied COVID-19 definitions and four 'expanded' phenotypes that focus on susceptibility given exposure, mild clinical manifestations and an aggregate score of symptom severity. We performed a replication analysis of 12 previously reported COVID-19 genetic associations with all eight phenotypes in a trans-ancestry meta-analysis of AncestryDNA research participants. In this analysis, we show distinct patterns of association at the 12 loci with the eight outcomes that we assessed. We also performed a genome-wide discovery analysis of all eight phenotypes, which did not yield new genome-wide significant loci but did suggest that three of the four 'expanded' COVID-19 phenotypes have enhanced power to capture protective genetic associations relative to the previously studied phenotypes. Thus, we conclude that continued large-scale ascertainment of deep COVID-19 phenotype data would likely represent a boon for COVID-19 therapeutic target identification.


Subject(s)
COVID-19 , Genome-Wide Association Study , COVID-19/genetics , Genetic Predisposition to Disease , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics
5.
BMC Bioinformatics ; 22(1): 459, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34563119

ABSTRACT

BACKGROUND: We present ARCHes, a fast and accurate haplotype-based approach for inferring an individual's ancestry composition. Our approach works by modeling haplotype diversity from a large, admixed cohort of hundreds of thousands, then annotating those models with population information from reference panels of known ancestry. RESULTS: The running time of ARCHes does not depend on the size of a reference panel because training and testing are separate processes, and the inferred population-annotated haplotype models can be written to disk and reused to label large test sets in parallel (in our experiments, it averages less than one minute to assign ancestry from 32 populations using 10 CPU). We test ARCHes on public data from the 1000 Genomes Project and the Human Genome Diversity Project (HGDP) as well as simulated examples of known admixture. CONCLUSIONS: Our results demonstrate that ARCHes outperforms RFMix at correctly assigning both global and local ancestry at finer population scales regardless of the amount of population admixture.


Subject(s)
Genetics, Population , Genome, Human , Haplotypes , Humans , Polymorphism, Single Nucleotide
6.
PLoS One ; 12(4): e0175310, 2017.
Article in English | MEDLINE | ID: mdl-28403240

ABSTRACT

The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.


Subject(s)
Databases, Genetic , Genomics/methods , Metadata , Software , Animals , DNA/genetics , Genome , Humans , Mice
7.
Nat Commun ; 8: 14238, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169989

ABSTRACT

Despite strides in characterizing human history from genetic polymorphism data, progress in identifying genetic signatures of recent demography has been limited. Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records. Recent population patterns captured by IBD clustering include immigrants such as Scandinavians and French Canadians; groups with continental admixture such as Puerto Ricans; settlers such as the Amish and Appalachians who experienced geographic or cultural isolation; and broad historical trends, including reduced north-south gene flow. Our results yield a detailed historical portrait of North America after European settlement and support substantial genetic heterogeneity in the United States beyond that uncovered by previous studies.


Subject(s)
Demography/statistics & numerical data , Genetics, Population/methods , Population Dynamics/trends , Population/genetics , Cluster Analysis , Demography/methods , Emigrants and Immigrants , Gene Flow/genetics , Genotyping Techniques , Haplotypes/genetics , Humans , Polymorphism, Single Nucleotide , Population Dynamics/statistics & numerical data , Sequence Analysis, DNA , United States/ethnology
8.
Article in English | MEDLINE | ID: mdl-26980513

ABSTRACT

The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org.


Subject(s)
Computational Biology/methods , DNA/genetics , Databases, Genetic , Algorithms , Animals , Caenorhabditis elegans , Computational Biology/standards , Data Collection , Drosophila melanogaster , High-Throughput Nucleotide Sequencing , Humans , Mice , Nucleic Acids/genetics , Quality Control , Reproducibility of Results , Sequence Alignment
9.
Mol Cell ; 61(6): 903-13, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26990993

ABSTRACT

Transcriptome-wide maps of RNA binding protein (RBP)-RNA interactions by immunoprecipitation (IP)-based methods such as RNA IP (RIP) and crosslinking and IP (CLIP) are key starting points for evaluating the molecular roles of the thousands of human RBPs. A significant bottleneck to the application of these methods in diverse cell lines, tissues, and developmental stages is the availability of validated IP-quality antibodies. Using IP followed by immunoblot assays, we have developed a validated repository of 438 commercially available antibodies that interrogate 365 unique RBPs. In parallel, 362 short-hairpin RNA (shRNA) constructs against 276 unique RBPs were also used to confirm specificity of these antibodies. These antibodies can characterize subcellular RBP localization. With the burgeoning interest in the roles of RBPs in cancer, neurobiology, and development, these resources are invaluable to the broad scientific community. Detailed information about these resources is publicly available at the ENCODE portal (https://www.encodeproject.org/).


Subject(s)
Databases, Genetic , RNA-Binding Proteins/genetics , RNA/metabolism , Transcriptome/genetics , Binding Sites , Humans , Protein Binding , RNA/genetics , RNA, Small Interfering/classification , RNA, Small Interfering/genetics , RNA-Binding Proteins/metabolism
10.
Nucleic Acids Res ; 44(D1): D726-32, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26527727

ABSTRACT

The Encyclopedia of DNA Elements (ENCODE) Project is in its third phase of creating a comprehensive catalog of functional elements in the human genome. This phase of the project includes an expansion of assays that measure diverse RNA populations, identify proteins that interact with RNA and DNA, probe regions of DNA hypersensitivity, and measure levels of DNA methylation in a wide range of cell and tissue types to identify putative regulatory elements. To date, results for almost 5000 experiments have been released for use by the scientific community. These data are available for searching, visualization and download at the new ENCODE Portal (www.encodeproject.org). The revamped ENCODE Portal provides new ways to browse and search the ENCODE data based on the metadata that describe the assays as well as summaries of the assays that focus on data provenance. In addition, it is a flexible platform that allows integration of genomic data from multiple projects. The portal experience was designed to improve access to ENCODE data by relying on metadata that allow reusability and reproducibility of the experiments.


Subject(s)
Databases, Genetic , Genome, Human , Genomics , Animals , DNA/metabolism , Genes , Humans , Mice , Proteins/metabolism , RNA/metabolism
11.
Article in English | MEDLINE | ID: mdl-25776021

ABSTRACT

The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a catalog of genomic annotations. To date, the project has generated over 4000 experiments across more than 350 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory network and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All ENCODE experimental data, metadata and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage and distribution to community resources and the scientific community. As the volume of data increases, the organization of experimental details becomes increasingly complicated and demands careful curation to identify related experiments. Here, we describe the ENCODE DCC's use of ontologies to standardize experimental metadata. We discuss how ontologies, when used to annotate metadata, provide improved searching capabilities and facilitate the ability to find connections within a set of experiments. Additionally, we provide examples of how ontologies are used to annotate ENCODE metadata and how the annotations can be identified via ontology-driven searches at the ENCODE portal. As genomic datasets grow larger and more interconnected, standardization of metadata becomes increasingly vital to allow for exploration and comparison of data between different scientific projects.


Subject(s)
Data Curation/methods , Databases, Genetic , Gene Ontology , Gene Regulatory Networks/physiology , Molecular Sequence Annotation/methods , Transcription, Genetic/physiology , Animals , Humans , Mice
12.
Database (Oxford) ; 2013: bat004, 2013.
Article in English | MEDLINE | ID: mdl-23396302

ABSTRACT

The Saccharomyces Genome Database (SGD) is a scientific database that provides researchers with high-quality curated data about the genes and gene products of Saccharomyces cerevisiae. To provide instant and easy access to this information on mobile devices, we have developed YeastGenome, a native application for the Apple iPhone and iPad. YeastGenome can be used to quickly find basic information about S. cerevisiae genes and chromosomal features regardless of internet connectivity. With or without network access, you can view basic information and Gene Ontology annotations about a gene of interest by searching gene names and gene descriptions or by browsing the database within the app to find the gene of interest. With internet access, the app provides more detailed information about the gene, including mutant phenotypes, references and protein and genetic interactions, as well as provides hyperlinks to retrieve detailed information by showing SGD pages and views of the genome browser. SGD provides online help describing basic ways to navigate the mobile version of SGD, highlights key features and answers frequently asked questions related to the app. The app is available from iTunes (http://itunes.com/apps/yeastgenome). The YeastGenome app is provided freely as a service to our community, as part of SGD's mission to provide free and open access to all its data and annotations.


Subject(s)
Cell Phone , Databases, Genetic , Genome, Fungal/genetics , Saccharomyces cerevisiae/genetics , Access to Information , Genes, Fungal , Internet
13.
Genome Res ; 22(9): 1790-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22955989

ABSTRACT

As the sequencing of healthy and disease genomes becomes more commonplace, detailed annotation provides interpretation for individual variation responsible for normal and disease phenotypes. Current approaches focus on direct changes in protein coding genes, particularly nonsynonymous mutations that directly affect the gene product. However, most individual variation occurs outside of genes and, indeed, most markers generated from genome-wide association studies (GWAS) identify variants outside of coding segments. Identification of potential regulatory changes that perturb these sites will lead to a better localization of truly functional variants and interpretation of their effects. We have developed a novel approach and database, RegulomeDB, which guides interpretation of regulatory variants in the human genome. RegulomeDB includes high-throughput, experimental data sets from ENCODE and other sources, as well as computational predictions and manual annotations to identify putative regulatory potential and identify functional variants. These data sources are combined into a powerful tool that scores variants to help separate functional variants from a large pool and provides a small set of putative sites with testable hypotheses as to their function. We demonstrate the applicability of this tool to the annotation of noncoding variants from 69 full sequenced genomes as well as that of a personal genome, where thousands of functionally associated variants were identified. Moreover, we demonstrate a GWAS where the database is able to quickly identify the known associated functional variant and provide a hypothesis as to its function. Overall, we expect this approach and resource to be valuable for the annotation of human genome sequences.


Subject(s)
Databases, Genetic , Genetic Variation , Genome, Human , Molecular Sequence Annotation , DNA-Binding Proteins/genetics , Genome-Wide Association Study , Genotype , Humans , Internet , Intracellular Signaling Peptides and Proteins/genetics , Lupus Erythematosus, Systemic/genetics , Nuclear Proteins/genetics , Open Reading Frames , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid , Tumor Necrosis Factor alpha-Induced Protein 3
14.
Database (Oxford) ; 2012: bar062, 2012.
Article in English | MEDLINE | ID: mdl-22434830

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) provides high-quality curated genomic, genetic, and molecular information on the genes and their products of the budding yeast Saccharomyces cerevisiae. To accommodate the increasingly complex, diverse needs of researchers for searching and comparing data, SGD has implemented InterMine (http://www.InterMine.org), an open source data warehouse system with a sophisticated querying interface, to create YeastMine (http://yeastmine.yeastgenome.org). YeastMine is a multifaceted search and retrieval environment that provides access to diverse data types. Searches can be initiated with a list of genes, a list of Gene Ontology terms, or lists of many other data types. The results from queries can be combined for further analysis and saved or downloaded in customizable file formats. Queries themselves can be customized by modifying predefined templates or by creating a new template to access a combination of specific data types. YeastMine offers multiple scenarios in which it can be used such as a powerful search interface, a discovery tool, a curation aid and also a complex database presentation format. DATABASE URL: http://yeastmine.yeastgenome.org.


Subject(s)
Database Management Systems , Databases, Genetic , Genome, Fungal , Saccharomyces cerevisiae/genetics , Internet , User-Computer Interface
15.
Database (Oxford) ; 2012: bas001, 2012.
Article in English | MEDLINE | ID: mdl-22434836

ABSTRACT

The set of annotations at the Saccharomyces Genome Database (SGD) that classifies the cellular function of S. cerevisiae gene products using Gene Ontology (GO) terms has become an important resource for facilitating experimental analysis. In addition to capturing and summarizing experimental results, the structured nature of GO annotations allows for functional comparison across organisms as well as propagation of functional predictions between related gene products. Due to their relevance to many areas of research, ensuring the accuracy and quality of these annotations is a priority at SGD. GO annotations are assigned either manually, by biocurators extracting experimental evidence from the scientific literature, or through automated methods that leverage computational algorithms to predict functional information. Here, we discuss the relationship between literature-based and computationally predicted GO annotations in SGD and extend a strategy whereby comparison of these two types of annotation identifies genes whose annotations need review. Our method, CvManGO (Computational versus Manual GO annotations), pairs literature-based GO annotations with computational GO predictions and evaluates the relationship of the two terms within GO, looking for instances of discrepancy. We found that this method will identify genes that require annotation updates, taking an important step towards finding ways to prioritize literature review. Additionally, we explored factors that may influence the effectiveness of CvManGO in identifying relevant gene targets to find in particular those genes that are missing literature-supported annotations, but our survey found that there are no immediately identifiable criteria by which one could enrich for these under-annotated genes. Finally, we discuss possible ways to improve this strategy, and the applicability of this method to other projects that use the GO for curation. DATABASE URL: http://www.yeastgenome.org.


Subject(s)
Databases, Genetic , Molecular Sequence Annotation/methods , Software , Vocabulary, Controlled , Computational Biology , Genes, Fungal , Genome, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/classification , Saccharomyces cerevisiae Proteins/genetics
16.
Nucleic Acids Res ; 40(Database issue): D700-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22110037

ABSTRACT

The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use.


Subject(s)
Databases, Genetic , Genome, Fungal , Saccharomyces cerevisiae/genetics , Genes, Fungal , Genomics , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phenotype , Software , Terminology as Topic
17.
Database (Oxford) ; 2011: bar004, 2011.
Article in English | MEDLINE | ID: mdl-21411447

ABSTRACT

Annotation using Gene Ontology (GO) terms is one of the most important ways in which biological information about specific gene products can be expressed in a searchable, computable form that may be compared across genomes and organisms. Because literature-based GO annotations are often used to propagate functional predictions between related proteins, their accuracy is critically important. We present a strategy that employs a comparison of literature-based annotations with computational predictions to identify and prioritize genes whose annotations need review. Using this method, we show that comparison of manually assigned 'unknown' annotations in the Saccharomyces Genome Database (SGD) with InterPro-based predictions can identify annotations that need to be updated. A survey of literature-based annotations and computational predictions made by the Gene Ontology Annotation (GOA) project at the European Bioinformatics Institute (EBI) across several other databases shows that this comparison strategy could be used to maintain and improve the quality of GO annotations for other organisms besides yeast. The survey also shows that although GOA-assigned predictions are the most comprehensive source of functional information for many genomes, a large proportion of genes in a variety of different organisms entirely lack these predictions but do have manual annotations. This underscores the critical need for manually performed, literature-based curation to provide functional information about genes that are outside the scope of widely used computational methods. Thus, the combination of manual and computational methods is essential to provide the most accurate and complete functional annotation of a genome. Database URL: http://www.yeastgenome.org.


Subject(s)
Bibliographies as Topic , Computational Biology/methods , Molecular Sequence Annotation/methods , Saccharomyces cerevisiae/genetics , Databases, Genetic , Feasibility Studies , Genome, Fungal/genetics , Software
18.
Nucleic Acids Res ; 38(Database issue): D433-6, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906697

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is a scientific database for the molecular biology and genetics of the yeast Saccharomyces cerevisiae, which is commonly known as baker's or budding yeast. The information in SGD includes functional annotations, mapping and sequence information, protein domains and structure, expression data, mutant phenotypes, physical and genetic interactions and the primary literature from which these data are derived. Here we describe how published phenotypes and genetic interaction data are annotated and displayed in SGD.


Subject(s)
Computational Biology/methods , Databases, Nucleic Acid , Genome, Fungal , Mutation , Saccharomyces cerevisiae/genetics , Computational Biology/trends , DNA, Fungal , Databases, Genetic , Databases, Protein , Genes, Fungal , Information Storage and Retrieval/methods , Internet , Phenotype , Protein Structure, Tertiary , Software
19.
Trends Microbiol ; 17(7): 286-94, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19577472

ABSTRACT

The quest to characterize each of the genes of the yeast Saccharomyces cerevisiae has propelled the development and application of novel high-throughput (HTP) experimental techniques. To handle the enormous amount of information generated by these techniques, new bioinformatics tools and resources are needed. Gene Ontology (GO) annotations curated by the Saccharomyces Genome Database (SGD) have facilitated the development of algorithms that analyze HTP data and help predict functions for poorly characterized genes in S. cerevisiae and other organisms. Here, we describe how published results are incorporated into GO annotations at SGD and why researchers can benefit from using these resources wisely to analyze their HTP data and predict gene functions.


Subject(s)
Computational Biology/methods , Genome, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/genetics , Vocabulary, Controlled
20.
Database (Oxford) ; 2009: bap001, 2009.
Article in English | MEDLINE | ID: mdl-20157474

ABSTRACT

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) organizes and displays molecular and genetic information about the genes and proteins of baker's yeast, Saccharomyces cerevisiae. Mutant phenotype screens have been the starting point for a large proportion of yeast molecular biological studies, and are still used today to elucidate the functions of uncharacterized genes and discover new roles for previously studied genes. To greatly facilitate searching and comparison of mutant phenotypes across genes, we have devised a new controlled-vocabulary system for capturing phenotype information. Each phenotype annotation is represented as an 'observable', which is the entity, or process that is observed, and a 'qualifier' that describes the change in that entity or process in the mutant (e.g. decreased, increased, or abnormal). Additional information about the mutant, such as strain background, allele name, conditions under which the phenotype is observed, or the identity of relevant chemicals, is captured in separate fields. For each gene, a summary of the mutant phenotype information is displayed on the Locus Summary page, and the complete information is displayed in tabular format on the Phenotype Details Page. All of the information is searchable and may also be downloaded in bulk using SGD's Batch Download Tool or Download Data Files Page. In the future, phenotypes will be integrated with other curated data to allow searching across different types of functional information, such as genetic and physical interaction data and Gene Ontology annotations.Database URL:http://www.yeastgenome.org/

SELECTION OF CITATIONS
SEARCH DETAIL
...