Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Opt Lett ; 34(5): 692-4, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19252595

ABSTRACT

We demonstrate a precision frequency measurement using a phase-stabilized 120 km optical fiber link over a physical distance of 50 km. The transition frequency of the (87)Sr optical lattice clock at the University of Tokyo is measured to be 429228004229874.1(2.4) Hz referenced to international atomic time. The results demonstrate the excellent functions of the intercity optical fiber link and the great potential of optical lattice clocks for use in the redefinition of the second.

2.
Phys Rev Lett ; 100(14): 140801, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18518019

ABSTRACT

The 1S0-3P0 clock transition frequency nuSr in neutral 87Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the 1 x 10(-15) level makes nuSr the best agreed-upon optical atomic frequency. We combine periodic variations in the 87Sr clock frequency with 199Hg+ and H-maser data to test local position invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant alpha, electron-proton mass ratio mu, and light quark mass. Furthermore, after 199Hg+, 171Yb+, and H, we add 87Sr as the fourth optical atomic clock species to enhance constraints on yearly drifts of alpha and mu.

3.
Opt Express ; 14(13): 5984-93, 2006 Jun 26.
Article in English | MEDLINE | ID: mdl-19516769

ABSTRACT

We report on a displacement metrology setup that provides sub-pm resolution in air. The setup is based on a Fabry-Perot cavity. However, unlike current Fabry-Perot cavity based displacement setups we incorporate a novel fs-laser based arbitrary wavelength synthesizer that provides efficient suppression of atmospheric disturbances while providing very wide and precise tuning of the output wavelength. The wavelength synthesizer provides sub-10 attometer wavelength resolution. The setup provides subpm length stability for integration times of up to one minute and sub-10 pm for up to half an hour without airtight enclosure of the Fabry-Perot cavities.

4.
Opt Lett ; 29(21): 2467-9, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15584263

ABSTRACT

The repetition rate and carrier-envelope phase offset frequencies of a turnkey, all-fiber-based continuum generator were phase locked to a hydrogen maser. The frequency of the hydrogen maser was calibrated with a highly stable cesium atomic clock, and therefore a fully phase-locked optical frequency comb with well-defined absolute frequencies was obtained. In contrast with the commonly used Ti:sapphire-laser-based systems, we have accomplished a fully turnkey system with no user-adjustable parts. To evaluate the performance of this novel system, we performed absolute frequency measurements in the telecommunications region and at 1064 nm and compared them with our traditional Ti:sapphire-based comb.

SELECTION OF CITATIONS
SEARCH DETAIL
...