Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 11(8): nwae107, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39007011

ABSTRACT

The magnetic correlations at the superconductor/ferromagnet (S/F) interfaces play a crucial role in realizing dissipation-less spin-based logic and memory technologies, such as triplet-supercurrent spin-valves and 'π' Josephson junctions. Here we report the observation of an induced large magnetic moment at high-quality nitride S/F interfaces. Using polarized neutron reflectometry and DC SQUID measurements, we quantitatively determined the magnetization profile of the S/F bilayer and confirmed that the induced magnetic moment in the adjacent superconductor only exists below T C. Interestingly, the direction of the induced moment in the superconductors was unexpectedly parallel to that in the ferromagnet, which contrasts with earlier findings in S/F heterostructures based on metals or oxides. First-principles calculations verified that the unusual interfacial spin texture observed in our study was caused by the Heisenberg direct exchange coupling with constant J∼4.28 meV through d-orbital overlapping and severe charge transfer across the interfaces. Our work establishes an incisive experimental probe for understanding the magnetic proximity behavior at S/F interfaces and provides a prototype epitaxial 'building block' for superconducting spintronics.

2.
ACS Omega ; 8(33): 29979-30000, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636928

ABSTRACT

Thick sequences of terrestrial multicolored mudstones of the Middle Jurassic Shaximiao Formation in the Sichuan Basin, Southwest China, effectively recorded paleoclimate and paleoenvironment changes. The paleoenvironment of the Shaximiao Formation is reconstructed by using detailed sedimentological and elemental geochemical analysis of the multicolored mudstones. The provenance, paleoclimate, paleosalinity, and paleoredox conditions are distinguished by using the discriminant indicators of CIA, C-value, Sr/Cu, Rb/Sr, Th/U, V/Cr, and V/(V + Ni). The results show that all samples derive primarily from felsic igneous rocks and intermediate rocks rather than recycled sediments. The mudstone sequences were deposited under semiarid and semihumid regions with paleoclimate evolved to drier and cooler conditions from lower to upper Shaximiao Formation. Such a paleoclimate coincided with the records of several basins in the lower paleolatitudes of the Northern Hemisphere and were possibly affected by the Middle Jurassic global geological events such as wildfire, paleogeographic reorganizations, and seaway dynamics change. The paleowater body belongs to a typical terrestrial freshwater environment, although the paleosalinity increased significantly during arid periods. The multicolored mudstones were deposited in oxidation and weak-oxidation to weak-anoxic conditions. We also propose a detailed conceptual paleoenvironment model for Shaximiao Formation, with a large perennial lake surrounded by limited alluvial plain during a period of high lake level and small ephemeral lakes scattering extensive alluvial plain during a phase of low lake level.

3.
Adv Mater ; 35(2): e2208221, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36300813

ABSTRACT

Interfacial magnetism stimulates the discovery of giant magnetoresistance (MR) and spin-orbital coupling across the heterointerfaces, facilitating the intimate correlation between spin transport and complex magnetic structures. Over decades, functional heterointerfaces composed of nitrides have seldom been explored due to the difficulty in synthesizing high-quality nitride films with correct compositions. Here, the fabrication of single-crystalline ferromagnetic Fe3 N thin films with precisely controlled thicknesses is reported. As film thickness decreases, the magnetization dramatically deteriorates, and the electronic state changes from metallic to insulating. Strikingly, the high-temperature ferromagnetism is maintained in a Fe3 N layer with a thickness down to 2 u.c. (≈8 Å). The MR exhibits a strong in-plane anisotropy; meanwhile, the anomalous Hall resistivity reverses its sign when the Fe3 N layer thickness exceeds 5 u.c. Furthermore, a sizable exchange bias is observed at the interfaces between a ferromagnetic Fe3 N and an antiferromagnetic CrN. The exchange bias field and saturation moment strongly depend on the controllable bending curvature using the cylinder diameter engineering technique, implying the tunable magnetic states under lattice deformation. This work provides a guideline for exploring functional nitride films and applying their interfacial phenomena for innovative perspectives toward practical applications.

4.
Adv Mater ; 35(2): e2206961, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36281802

ABSTRACT

Interfaces formed by correlated oxides offer a critical avenue for discovering emergent phenomena and quantum states. However, the fabrication of oxide interfaces with variable crystallographic orientations and strain states integrated along a film plane is extremely challenging by conventional layer-by-layer stacking or self-assembling. Here, the creation of morphotropic grain boundaries (GBs) in laterally interconnected cobaltite homostructures is reported. Single-crystalline substrates and suspended ultrathin freestanding membranes provide independent templates for coherent epitaxy and constraint on the growth orientation, resulting in seamless and atomically sharp GBs. Electronic states and magnetic behavior in hybrid structures are laterally modulated and isolated by GBs, enabling artificially engineered functionalities in the planar matrix. This work offers a simple and scalable method for fabricating unprecedented innovative interfaces through controlled synthesis routes as well as providing a platform for exploring potential applications in neuromorphics, solid-state batteries, and catalysis.

5.
Sci Adv ; 8(43): eabq3981, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36306366

ABSTRACT

Emergent phenomena at heterointerfaces are directly associated with the bonding geometry of adjacent layers. Effective control of accessible parameters, such as the bond length and bonding angles, offers an elegant method to tailor competing energies of the electronic and magnetic ground states. In this study, we construct unit-thick syntactic layers of cobaltites within a strongly tilted octahedral matrix via atomically precise synthesis. The octahedral tilt patterns of adjacent layers propagate into cobaltites, leading to a continuation of octahedral tilting while maintaining substantial misfit tensile strain. These effects induce severe rumpling within an atomic plane of neighboring layers, further triggering the electronic reconstruction between the splitting orbitals. First-principles calculations reveal that the cobalt ions transit to a higher spin state level upon octahedral tilting, resulting in robust ferromagnetism in ultrathin cobaltites. This work demonstrates a design methodology for fine-tuning the lattice and spin degrees of freedom in correlated quantum heterostructures by exploiting epitaxial geometric engineering.

6.
ACS Omega ; 6(21): 13588-13600, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34095653

ABSTRACT

Gas chromatography-mass spectrometry (GC-MS) analysis has revealed extremely high abundances of rearranged hopanes in Jurassic source rocks and related crude oils in the center of the Sichuan Basin. The detected rearranged hopanes include 17α(H)-diahopanes (C27D and C29-35D), early-eluting rearranged hopanes (C27E and C29-33E), and 18α(H)-neohopanes (C29Ts and Ts). Both the 17α(H)-diahopanes and the early-eluting rearranged hopanes exhibit a distribution pattern similar to that of the 17α(H)-hopane series, with a predominance of the C30 member and the presence of 22S and 22R epimers of hopanes in the extended series (>C30). The results of this study show that the relatively high abundance of rearranged hopanes in Jurassic source rocks in the study area is associated with their depositional environments and with clay-mediated acidic catalysis rather than, as was previously thought, thermal maturity. Shallow lacustrine facies with brackish water and a suboxic to weak reducing sedimentary environment have contributed to the enrichment of rearranged hopanes, and clay-mediated acidic catalysis may also have had a positive influence on their abundance. The distribution patterns of the diahopane series indicate that the oils from Jurassic reservoirs in the Gongshanmiao Oilfield are sourced from Jurassic source rocks. Rearranged hopanes are therefore considered to be effective biomarkers for oil-source correlation in the center of the Sichuan Basin.

7.
Materials (Basel) ; 13(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936577

ABSTRACT

This article presents the application of a computational fluid dynamics (CFD) finite volume method (FVM) model for a thermo-mechanical coupling simulation of the weld pool used in variable polarity plasma arc welding (VPPAW). Based on the mechanism of the additional pressure produced through self-magnetic arc compression and the jet generated from mechanical plasma arc compression, and considering the influence of arc height and keyhole secondary compression on arc pressure, a three-dimensional transient model of variable polarity plasma arc (VPPA) arc pressure was established. The material flow behaviors of the perforated weld pools were studied. The results show that three kinds of flow behavior existed in the perforation weld pools and it is feasible to predict the weld pool stability by the material flow behaviors of the perforated weld pools. The weld pools can exist stably if the material flow in the bottom of the perforated weld pools can form confluences with moderate flow velocities of 0.45 m/s, 0.55 m/s and 0.60 m/s. The weld pools were cut when the material flowed downward and outward with the maximum velocity of 0.70 m/s, 0.80 m/s. When the maximum material flow velocity was 0.40 m/s, the weld pool collapsed downward under the action of larger gravity. The thermo-mechanical coupling model was verified by the comparison of the simulation and experimental results.

8.
Mikrochim Acta ; 186(7): 457, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31218476

ABSTRACT

A novel ketone-functionalized carbazolic porous framework named PBPMCz is presented for fluorometric determination of p-nitroaniline (PNA). PBPMCz was prepared by FeCl3-promoted oxidative coupling polymerization of 1,3,5-tris((4-(9H-carbazol-9-yl)phenyl)methanone-1-yl)benzene. The polymer possesses a BET surface area of above 907 m2∙g-1 with a pore volume of 0.72 cm3∙g-1. Compared to the ketone-free framework, the green fluorescence of the probe PBPMCz is more strongly quenched by PNA. Figures of merit include (a) excitation/emission wavelengths of 366/540 nm; (b) a Stern-Volmer constant (Ksv) of 2.2 × 104 M-1, and (c) a detection limit of 1.1 µM. Furthermore, PBPMCz shows different quenching behaviors of PNA compared with o-nitroaniline and m-nitroaniline. The excellent performance of the fluorescent probe is ascribed to the abundant carbazole sites and ketone groups in PBPMCz. These facilitate the electron transfer and hydrogen-bonding interactions between PNA and the polymer. Graphical abstract Schematic presentation of a luminescent carbazolic porous organic framework (CzPOF) modified with keto groups. It shows ultra-sensitivity to quenching by PNA over other nitroaniline isomers.

9.
Sci Rep ; 8(1): 8336, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844479

ABSTRACT

Natural gas of organic origin is primarily biogenic or thermogenic; however, the formation of natural gas is occasionally attributed to hydrothermal activity. The Precambrian dolomite reservoir of the Anyue gas field is divided into three stages. Dolomite-quartz veins were precipitated after two earlier stages of dolomite deposition. Fluid inclusions in the dolomite and quartz are divided into pure methane (P-type), methane-bearing (M-type), aqueous (W-type), and solid bitumen-bearing (S-type) inclusions. The W-type inclusions within the quartz and buried dolomite homogenized between 107 °C and 223 °C. Furthermore, the trapping temperatures and pressures of the fluid (249 °C to 319 °C and 1619 bar to 2300 bar, respectively) are obtained from the intersections of the isochores of the P-type and the coeval W-type inclusions in the quartz. However, the burial history of the reservoir indicates that the maximum burial temperature did not exceed 230 °C. Thus, the generation of the natural gas was not caused solely by the burial of the dolomite reservoir. The results are also supported by the presence of paragenetic pyrobitumen and MVT lead-zinc ore. A coupled system of occasional invasion by hydrothermal fluids and burial of the reservoir may represent a new genetic model for natural gas accumulation in this gas field.

SELECTION OF CITATIONS
SEARCH DETAIL
...