Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 21(1): 365, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798714

ABSTRACT

Photothermal therapy (PTT) is a novel cancer treatment using a photoabsorber to cause hyperthermia to kill tumors by laser irradiation. Prussian blue nanoparticles (PB NPs) are considered as next-generation photothermal agents due to the facile synthesis and excellent absorption of near-infrared light. Although PB NPs demonstrate remarkable PTT capabilities, their clinical application is limited due to their systemic toxicity. Bacterial cellulose (BC) has been applied to various bio-applications based on its unique properties and biocompatibility. Herein, we design composites with PB NPs and BC as an injectable, highly biocompatible PTT agent (IBC-PB composites). Injectable bacterial cellulose (IBC) is produced through the trituration of BC, with PB NPs synthesized on the IBC surface to prepare IBC-PB composites. IBC-PB composites show in vitro and in vivo photothermal therapeutic effects similar to those of PB NPs but with significantly greater biocompatibility. Specifically, in vitro therapeutic index of IBC-PB composites is 26.5-fold higher than that of PB NPs. Furthermore, unlike PB NPs, IBC-PB composites exhibit no overt toxicity in mice as assessed by blood biochemical analysis and histological images. Hence, it is worth pursuing further research and development of IBC-PB composites as they hold promise as safe and efficacious PTT agents for clinical application.


Subject(s)
Nanocomposites , Nanoparticles , Neoplasms , Animals , Mice , Photothermal Therapy , Nanoparticles/chemistry , Phototherapy , Nanocomposites/therapeutic use , Nanocomposites/chemistry , Neoplasms/therapy
2.
RSC Adv ; 13(5): 2803-2810, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756446

ABSTRACT

Currently, research on superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic hyperthermia applications is steadily increasing. In this work, SPIONs were synthesized by the bromide-assisted polyol method and angle-shaped SPIONs were successfully generated with the optimized concentration of bromide. The influence of bromide concentration on the shape of the generated SPIONs as well as the heating characteristics under an alternating magnetic field (AMF) was thoroughly investigated. At a concentration of 20 mg mL-1 of the angle-shaped SPIONs, the highest temperature curve up to 23 °C was observed under AMF with 140 Oe and 100 kHz for 10 min. With the biotoxicity assay, no significant cytotoxicity was observed in the normal fibroblast of HFB-141103 as well as tumor cells of U87MG and FSall treated with the angle-shaped SPIONs at a concentration below 100 µg mL-1. However, significantly decreased cellular viability was observed in tumor cells of U87MG and FSall treated with 100 µg mL-1 of the angle-shaped SPIONs under AMF with 140 Oe and 100 kHz. Based on these results, it is thought that the angle-shaped SPIONs synthesized by the bromide-assisted polyol method will provide highly efficient magnetic hyperthermia therapy for cancers under biologically safe AMF with 140 Oe and 100 kHz.

3.
RSC Adv ; 12(18): 11526-11533, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425029

ABSTRACT

In this work, a facile synthetic route for the preparation of high aspect ratio Cu oxide nanowires is reported. The preparation of the Cu oxide nanowires begins with the generation of pure Cu nanoparticles by inert gas condensation (IGC) method, follows by dispersing the obtained nanoparticles in methanol with the aid of ultrasonication. The mixture is stored at different temperature for the transformation from Cu nanoparticle to Cu oxide nanowires. The influences of the kind of solution, the ratio of methanol to Cu nanoparticle, dispersion time and temperature towards the generation of Cu oxide nanowires are studied in detail. Scanning electron microscopy studies indicate that high aspect ratio Cu oxide nanowires with diameter of a few tens of nanometers and length up to several tens of micrometers could be obtained under proper conditions. The mechanism for the transformation of Cu nanoparticles to Cu oxide nanowires is also investigated.

4.
ACS Appl Mater Interfaces ; 13(40): 47593-47602, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34583503

ABSTRACT

Recent studies of lithium-sulfur (Li-S) batteries have identified that a modified separator plays a critical role in challenging the capacity fading and shuttle effect of lithium polysulfides (LiPSs). Herein, we report a polyaniline-encapsulated hollow Co-Fe Prussian blue analogue (CFP@PANI) for separator modification. The open frame-like hollow CFP was synthesized via oriented attachment (OA). To improve the catalytic effect and electrical conductivity, PANI was coated on the synthesized CFP. The resulting CFP@PANI was applied on the conventional polypropylene (PP) separator (CFP@PANI-PP) with vacuum filtration. With a ketjen black/sulfur (KB/S) cathode with 66% of the sulfur load, the CFP@PANI-PP exhibited an initial capacity of 723.1 mAh g-1 at a current density of 1 A g-1. Furthermore, the CFP@PANI-PP showed stable cycling performance with 83.5% capacity retention after 100 cycles at 1 A g-1. During the 100 cycles, each cycle maintained high coulombic efficiency above 99.5%, which indicates that the CFP@PANI-PP could inhibit LiPS migration to the anode side without a Li+ transport disturbance across the separator. Overall, the CFP@PANI-PP efficiently suppressed LiPSs, resulting in enhanced electrochemical performance. The current study provides useful insight into designing a nanostructure for separator modification of Li-S batteries.

5.
Nano Converg ; 7(1): 20, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32514813

ABSTRACT

Among the number of hyperthermia materials, magnetic nanoparticles have received much attention. In this work, we studied the heating characteristics of uniform Fe@Fe3O4 core-shell nanoparticle under near-infrared laser irradiation and external AC magnetic field applying. The Fe@Fe3O4 core-shell nanoparticles were prepared by thermal decomposition of iron pentacarbonyl and followed by controlled oxidation. The prepared uniform particles were further coated with dimercaptosuccinic acid to make them well dispersed in water. Near-infrared derived photothermal study of solutions containing a different concentration of the core-shell nanoparticles was made by using 808 nm laser Source. Additionally, magnetic hyperthermia ability of the Fe@Fe3O4 nanoparticle at 150 kHz and various oersted (140-180 Oe) condition was systemically characterized. The Fe@Fe3O4 nanoparticles which exhibited effective photo and magnetic hyperthermia are expected to be used in biomedical application.

SELECTION OF CITATIONS
SEARCH DETAIL
...