Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202133

ABSTRACT

Loss of skeletal muscle mass and function with age represents an important source of frailty and functional decline in the elderly. Antioxidants from botanical extracts have been shown to enhance the development, mass, and strength of skeletal muscle by influencing age-related cellular and molecular processes. Tannase-treated green tea extract contains high levels of the antioxidants (-)-epicatechin (EC) and gallic acid that may have therapeutic benefits for age-related muscle decline. The aim of this study was to investigate the effect of tannase-treated green tea extract on various muscle-related parameters, without concomitant exercise, in a single-center, randomized, double-blind, placebo-controlled study. Administration of tannase-treated green tea extract (600 mg/day) for 12 weeks significantly increased isokinetic flexor muscle and handgrip strength in the treatment group compared with those in the placebo (control) group. In addition, the control group showed a significant decrease in arm muscle mass after 12 weeks, whereas no significant change was observed in the treatment group. Blood serum levels of follistatin, myostatin, high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-6, IL-8, insulin-like growth factor-1 (IGF-1), and cortisol were analyzed, and the decrease in myostatin resulting from the administration of tannase-treated green tea extract was found to be related to the change in muscle mass and strength. In summary, oral administration of tannase-treated green tea extract containing antioxidants without concomitant exercise can improve muscle mass and strength and may have therapeutic benefits in age-related muscle function decline.

2.
BMC Complement Med Ther ; 20(1): 47, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32046706

ABSTRACT

BACKGROUND: The aim of this study was to investigate the effect of tannase-converted green tea extract with a high (-)-epicatechin (EC), (-)-epigallocatechin (EGC), and gallic acid (GA) content on myotube density and fusion in normal and oxidative stress-induced C2C12 skeletal muscle cells. Although the use of green tea extract is considered beneficial, cellular and molecular mechanisms of action of tannase-converted green tea extracts that are used as potential muscle growth materials have not been thoroughly studied. METHODS: This study used histological analysis and molecular biology techniques, and compared the results with those for AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribonucleoside (AICAR) and green tea extracts. RESULTS: The myotube density of normal and oxidative stress-induced C2C12 cells was significantly higher in the tannase-converted green tea extract-treated group than that observed in the other groups (normal cells: P < 0.01; oxidative stress-induced cells: P < 0.05). In addition, tannase-converted green tea extract and green tea extract treatments significantly upregulated the genetic expression of myogenin, Myf5, and MyoD (P < 0.05). The levels of AMP-activated protein kinase-α (AMPKα) and muscle RING-finger protein-1 (MuRF-1) in the tannase-converted green tea extract group were higher than those in the AICAR and green tea extract groups (P < 0.05). CONCLUSIONS: Taken together, our findings describe that the high levels of EC, EGC, and GA in the tannase-converted green tea extract are attributable to the morphological changes in C2C12 cells and intercellular signaling pathways. Therefore, tannase-converted green tea extract can be used in the treatment of sarcopenia.


Subject(s)
Catechin/pharmacology , Muscle Development/drug effects , Muscle Fibers, Skeletal/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Tea/chemistry , Animals , Antioxidants/metabolism , Camellia sinensis/chemistry , Carboxylic Ester Hydrolases/metabolism , Cell Line , Mice , Republic of Korea
3.
Nanoscale Res Lett ; 14(1): 58, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30778693

ABSTRACT

BACKGROUND: The aim of this study is to fabricate drug-eluting gastrointestinal (GI) stent using reactive oxygen species (ROS)-sensitive nanofiber mats for treatment of cholangiocarcinoma (CCA) cell. A ROS-producing agent, piperlongumine (PL)-incorporated nanofiber mats were investigated for drug-eluting stent (DES) application. METHODS: Selenocystamine-conjugated methoxy poly(ethylene glycol) (MePEG) was conjugated with poly(L-lactide) (PLA) to produce block copolymer (LEse block copolymer). Various ratios of poly(ε-caprolactone) (PCL) and LEse block copolymer were dissolved in organic solvent with PL, and then nanofiber mats were fabricated by electro-spinning techniques. RESULTS: The higher amount of LEse in the blend of PCL/LEse resulted in the formation of granules while PCL alone showed fine nanofiber structure. Nanofiber mats composed of PCL/LEse polymer blend showed ROS-sensitive drug release, i.e., PL release rate from nanofiber mats was accelerated in the presence of hydrogen peroxide (H2O2) while nanofiber mats of PCL alone have small changes in drug release rate, indicating that PL-incorporated nanofiber membranes have ROS responsiveness. PL itself and PL released from nanofiber mats showed almost similar anticancer activity against various CCA cells. Furthermore, PL released from nanofiber mats properly produced ROS generation and induced apoptosis of CCA cells as well as PL itself. In HuCC-T1 cell-bearing mice, PL-incorporated nanofiber mats showed improvement in anticancer activity. CONCLUSION: PL-incorporated ROS-sensitive nanofiber mats were coated onto GI stent and showed improved anticancer activity with ROS responsiveness. We suggested PL-incorporated ROS-sensitive nanofiber mats as a promising candidate for local treatment of CCA cells.

4.
Toxicol In Vitro ; 58: 256-263, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30742918

ABSTRACT

The presence of veterinary drug residues in foods and the environment could potentially cause adverse effects on humans and wildlife. Several veterinary drugs were reported to exhibit endocrine disrupting effects via binding affinities to sexual hormone receptors such as estrogen and androgen receptors. Therefore, we confirmed the human estrogen receptor (ER) agonistic/antagonistic effects of 135 chemicals that were used as veterinary drugs in Korea by the official Organization for Economic Cooperation and Development (OECD) in vitro ER transcriptional activation (TA) assay using the VM7Luc4E2 cell line. In the case of ER agonist screening, 7 veterinary drugs (cefuroxime, cymiazole, trenbolone, zeranol, phoxim, altrenogest and nandrolone) were determined to be ER agonists. In addition, only zeranol was found to exhibit weak ER antagonistic activity. These 7 veterinary drugs, which were determined as ER agonists and/or antagonists by an OECD in vitro assay, were also found to have binding affinity to ERs. These results indicate that various veterinary drugs possess potential (anti-)estrogenic effects. However, further study is needed to determine the precise endocrine-disrupting effects of these compounds.


Subject(s)
Biological Assay , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha , Estrogen Receptor beta , Estrogens/pharmacology , Veterinary Drugs/pharmacology , Animal Husbandry , Animals , Aquaculture , Cell Line , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/agonists , Estrogen Receptor beta/antagonists & inhibitors , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Fishes , Humans , Livestock , Organisation for Economic Co-Operation and Development , Transcriptional Activation , Transfection
5.
Behav Pharmacol ; 28(2 and 3-Spec Issue): 199-206, 2017 04.
Article in English | MEDLINE | ID: mdl-28234659

ABSTRACT

Agitation associated with dementia is frequently reported clinically but has received little attention in preclinical models of dementia. The current study used a 7PA2 CM intracerebroventricular injection model of Alzheimer's disease (AD) to assess acute memory impairment, and a bilateral intrahippocampal (IH) injection model of AD (aggregated Aß1-42 injections) and a bilateral IH injection model of dementia with Lewy bodies (aggregated NAC61-95 injections) to assess chronic memory impairment in the rat. An alternating-lever cyclic-ratio schedule of operant responding was used for data collection, where incorrect lever perseverations measured executive function (memory) and running response rates (RRR) measured behavioral output (agitation). The results indicate that bilateral IH injections of Aß1-42 and bilateral IH injections of NAC61-95 decreased memory function and increased RRRs, whereas intracerebroventricular injections of 7PA2 CM decreased memory function but did not increase RRRs. These findings show that using the aggregated peptide IH injection models of dementia to induce chronic neurotoxicity, memory decline was accompanied by elevated behavioral output. This demonstrates that IH peptide injection models of dementia provide a preclinical screen for pharmacological interventions used in the treatment of increased behavioral output (agitation), which also establish detrimental side effects on memory.


Subject(s)
Alzheimer Disease/physiopathology , Lewy Body Disease/physiopathology , Memory Disorders/physiopathology , Psychomotor Agitation/physiopathology , Amyloid beta-Peptides/toxicity , Animals , Behavior, Animal/physiology , Conditioning, Operant/physiology , Disease Models, Animal , Executive Function/physiology , Hippocampus , Injections, Intraventricular , Male , Peptide Fragments/toxicity , Rats , Rats, Sprague-Dawley , alpha-Synuclein/toxicity
6.
Lab Anim Res ; 31(3): 139-47, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26472967

ABSTRACT

The aim of this study was to verify subacute oral dose toxicity of positively charged 100 nm zinc oxide (ZnO(AE100[+])) nanoparticles (NPs) in Sprague-Dawley rats. ZnO(AE100[+]) NPs were administered to rats of each sex by gavage at 0, 500, 1,000, and 2,000 mg/kg/day for 14 days. During the study period, clinical signs, mortality, body weight, food consumption, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. Increased mortality and clinical signs, decreased body weight, feed consumption, hemoglobin (HB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelet (PT), and lymphocyte (LYM) and increased white blood cells (WBCs), neutrophils (NEUs), alkaline phosphatase (ALP), and histopathological alterations in the spleen, stomach, and pancreas were observed at 2,000 mg/kg/day. Increased clinical signs, decreased body weight, feed consumption, HB, HCT, MCV, MCH, MCHC, and LYM and increased WBCs, NEUs, ALP, and histopathological alterations in the spleen, stomach, and pancreas were seen at 1,000 mg/kg/day. Increased clinical signs, decreased MCV and MCH and increased histopathological alterations in the stomach and pancreas were found at 500 mg/kg/day. These results suggest that the target organs were the spleen, stomach, and pancreas in rats. The no-observed-adverse-effect level was <500 mg/kg for both sexes.

7.
Toxicol Res ; 31(2): 157-63, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26191382

ABSTRACT

Nanotechnology has advanced at an extremely rapid pace over the past several years in numerous fields of research. However, the uptake of nanoparticles (NPs) into the body after administration through various routes may pose a risk to human health. In this study, we investigated the potential ocular toxicity of 20-nm, negatively- charged zinc oxide (ZnO) NPs in rats using micro-computed tomography (micro-CT) and histopathological assessment. Animals were divided into four groups as control group, ZnO NPs treatment group (500 mg/kg/day), control recovery group, and ZnO NPs treatment and recovery group. Ocular samples were prepared from animals treated for 90 days (10 males and 10 females, respectively) and from recovery animals (5 males and 5 females, respectively) sacrificed at 14 days after final treatment and were compared to age-matched control animals. Micro-CT analyses represented the deposition and distribution of foreign materials in the eyes of rats treated with ZnO NPs, whereas control animals showed no such findings. X-ray fluorescence spectrometry and energy dispersive spectrometry showed the intraocular foreign materials as zinc in treated rats, whereas control animals showed no zinc signal. Histopathological examination revealed the retinopathy in the eyes of rats treated with ZnO NPs. Neuronal nuclei expression was decreased in neurons of the ganglion cell layer of animals treated with ZnO NPs compared to the control group. Taken together, treatment with 20-nm, negatively-charged ZnO NPs increased retinopathy, associated with local distribution of them in ocular lesions.

8.
Nanotoxicology ; 8(4): 349-62, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23432083

ABSTRACT

Combined repeated-dose toxicity study of citrate-capped silver nanoparticles (7.9 ± 0.95 nm) with reproduction/developmental toxicity was investigated in rats orally treated with 62.5, 125 and 250 mg/kg, once a day for 42 days for males and up to 52 days for females. The test was performed based on the Organization for Economic Cooperation and Development test guideline 422 and Good Laboratory Practice principles. No death was observed in any of the groups. Alopecia, salivation and yellow discolouration of the lung were observed in a few rats but the symptoms were not dose-dependent. Haematology, serum biochemical investigation and histopathological analysis revealed no statistically significant differences between control group and the treated groups. Toxicity endpoints of reproduction/developmental screening test including mating, fertility, implantation, delivery and foetus were measured. There was no evidence of toxicity.


Subject(s)
Metal Nanoparticles/toxicity , Organ Size/drug effects , Reproduction/drug effects , Silver/toxicity , Animals , Blood/drug effects , Dose-Response Relationship, Drug , Female , Male , Particle Size , Rats , Rats, Sprague-Dawley , Silver/pharmacokinetics , Tissue Distribution , Toxicity Tests
9.
Int J Nanomedicine ; 9 Suppl 2: 79-92, 2014.
Article in English | MEDLINE | ID: mdl-25565828

ABSTRACT

PURPOSE: The widespread use of nanoparticles (NPs) in industrial and biomedical applications has prompted growing concern regarding their potential toxicity and impact on human health. This study therefore investigated the subchronic, systemic oral toxicity and no-observed-adverse-effect level (NOAEL) of 20 nm, negatively charged zinc oxide (ZnO(SM20(-))) NPs in Sprague Dawley rats for 90 days. METHODS: The high-dose NP level was set at 500 mg/kg of bodyweight, and the mid- and low-dose levels were set at 250 and 125 mg/kg, respectively. The rats were observed during a 14-day recovery period after the last NP administration for the persistence or reduction of any adverse effects. Toxicokinetic and distribution studies were also conducted to determine the systemic distribution of the NPs. RESULTS: No rats died during the test period. However, ZnO(SM20(-)) NPs (500 mg/kg) induced changes in the levels of anemia-related factors, prompted acinar cell apoptosis and ductular hyperplasia, stimulated periductular lymphoid cell infiltration and excessive salivation, and increased the numbers of regenerative acinar cells in the pancreas. In addition, stomach lesions were seen at 125, 250, and 500 mg/kg, and retinal atrophy was observed at 250 and 500 mg/kg. The Zn concentration was dose-dependently increased in the liver, kidney, intestines, and plasma, but not in other organs investigated. CONCLUSION: A ZnO(SM20(-)) NP NOAEL could not be established from the current results, but the lowest-observed-adverse-effect level was 125 mg/kg. Furthermore, the NPs were associated with a number of undesirable systemic actions. Thus, their use in humans must be approached with caution.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Administration, Oral , Animals , Anions , Apoptosis/drug effects , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Pancreas/drug effects , Particle Size , Rats , Rats, Sprague-Dawley , Tissue Distribution , Toxicity Tests, Subchronic , Zinc Oxide/administration & dosage , Zinc Oxide/chemistry , Zinc Oxide/pharmacokinetics , Zinc Oxide/toxicity
10.
Int J Nanomedicine ; 9 Suppl 2: 93-107, 2014.
Article in English | MEDLINE | ID: mdl-25565829

ABSTRACT

PURPOSE: The study reported here was conducted to determine the systemic oral toxicity and to find the no-observed-adverse-effect level of 20 nm positively charged zinc oxide (ZnO(SM20(+))) nanoparticles in Sprague Dawley rats for 90 days. METHODS: For the 90-day toxicity study, the high dose was set as 500 mg per kg of body weight (mg/kg) and the middle and low dose were set to 250 mg/kg and 125 mg/kg, respectively. The rats were held for a 14-day recovery period after the last administration, to observe for the persistence or reduction of any toxic effects. A distributional study was also carried out for the systemic distribution of ZnO(SM20(+)) NPs. RESULTS: No rats died during the test period. There were no significant clinical changes due to the test article during the experimental period in functional assessment, body weight, food and water consumption, ophthalmological testing, urine analysis, necropsy findings, or organ weights, but salivation was observed immediately after administration in both sexes. The total red blood cell count was increased, and hematocrit, albumin, mean cell volume, mean cell hemoglobin, and mean cell hemoglobin concentration were decreased significantly compared with control in both 500 mg/kg groups. Total protein and albumin levels were decreased significantly in both sexes in the 250 and 500 mg/kg groups. Histopathological studies revealed acinar cell apoptosis in the pancreas, inflammation and edema in stomach mucosa, and retinal atrophy of the eye in the 500 mg/kg group. CONCLUSION: There were significant parameter changes in terms of anemia in the hematological and blood chemical analyses in the 250 and 500 mg/kg groups. The significant toxic change was observed to be below 125 mg/kg, so the no-observed-adverse-effect level was not determined, but the lowest-observed-adverse-effect level was considered to be 125 mg/kg in both sexes and the target organs were found to be the pancreas, eye, and stomach.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Administration, Oral , Animals , Apoptosis/drug effects , Cations , Edema , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Pancreas/drug effects , Particle Size , Rats , Rats, Sprague-Dawley , Tissue Distribution , Toxicity Tests, Subchronic , Zinc Oxide/administration & dosage , Zinc Oxide/chemistry , Zinc Oxide/pharmacokinetics , Zinc Oxide/toxicity
11.
Int J Nanomedicine ; 9 Suppl 2: 109-26, 2014.
Article in English | MEDLINE | ID: mdl-25565830

ABSTRACT

Nanoparticles (NPs) are used commercially in health and fitness fields, but information about the toxicity and mechanisms underlying the toxic effects of NPs is still very limited. The aim of this study is to investigate the toxic effect(s) of 100 nm negatively (ZnO(AE100[-])) or positively (ZnO(AE100[+])) charged zinc oxide (ZnO) NPs administered by gavage in Sprague Dawley rats, to establish a no observed adverse effect level, and to identify target organ(s). After verification of the primary particle size, morphology, hydrodynamic size, and zeta potential of each test article, we performed a 90-day study according to Organisation for Economic Co-operation and Development test guideline 408. For the 90-day study, the high dose was set at 500 mg/kg and the middle and low doses were set at 125 mg/kg and 31.25 mg/kg, respectively. Both ZnO NPs had significant changes in hematological and blood biochemical analysis, which could correlate with anemia-related parameters, in the 500 mg/kg groups of both sexes. Histopathological examination showed significant adverse effects (by both test articles) in the stomach, pancreas, eye, and prostate gland tissues, but the particle charge did not affect the tendency or the degree of the lesions. We speculate that this inflammatory damage might result from continuous irritation caused by both test articles. Therefore, the target organs for both ZnO(AE100(-)) and ZnO(AE100(+)) are considered to be the stomach, pancreas, eye, and prostate gland. Also, the no observed adverse effect level for both test articles was identified as 31.25 mg/kg for both sexes, because the adverse effects were observed at all doses greater than 125 mg/kg.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Administration, Oral , Animals , Female , Male , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Pancreas/drug effects , Rats, Sprague-Dawley , Stomach/drug effects , Tissue Distribution , Toxicity Tests , Zinc Oxide/administration & dosage , Zinc Oxide/chemistry , Zinc Oxide/pharmacokinetics , Zinc Oxide/toxicity
12.
Int J Nanomedicine ; 9 Suppl 2: 127-36, 2014.
Article in English | MEDLINE | ID: mdl-25565831

ABSTRACT

Silica is a very common material that can be found in both crystalline and amorphous forms. Well-known toxicities of the lung can occur after exposure to the crystalline form of silica. However, the toxicities of the amorphous form of silica have not been thoroughly studied. The majority of in vivo studies of amorphous silica nanoparticles (NPs) were performed using an inhalation exposure method. Since silica NPs can be commonly administered through the skin, a study of dermal silica toxicity was necessary to determine any harmful effects from dermal exposures. The present study focused on the results of systemic toxicity after applying 20 nm colloidal silica NPs on rat skin for 90 days, in accordance with the Organization for Economic Cooperation and Development test guideline 411 with a good laboratory practice system. Unlike the inhalation route or gastrointestinal route, the contact of silica NPs through skin did not result in any toxicity or any change in internal organs up to a dose of 2,000 mg/kg in rats.


Subject(s)
Environmental Exposure/analysis , Nanoparticles , Silicon Dioxide , Administration, Cutaneous , Animals , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticles/toxicity , Rats , Silicon Dioxide/administration & dosage , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity , Toxicity Tests, Chronic
13.
Int J Nanomedicine ; 9 Suppl 2: 145-57, 2014.
Article in English | MEDLINE | ID: mdl-25565833

ABSTRACT

This study investigated the potential adverse effects of zinc oxide nanoparticles (ZnO(SM20[-]) NPs; negatively charged, 20 nm) on pregnant dams and embryo-fetal development after maternal exposure over the period of gestational days 5-19 with Sprague Dawley rats. ZnO(SM20(-)) NPs were administered to pregnant rats by gavage at 0 mg/kg/day, 100 mg/kg/day, 200 mg/kg/day, and 400 mg/kg/day. All dams were subjected to caesarean section on gestational day 20, and all the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight at 400 mg/kg/day and decreased liver weight, and increased adrenal glands weight at 200 mg/kg/day and 400 mg/kg/day. However, no treatment-related difference in the number of corpora lutea, the number of implantation sites, the implantation rate (%), resorption, dead fetuses, litter size, fetal deaths, fetal and placental weights, and sex ratio were observed between the groups. Morphological examinations of the fetuses demonstrated no significant difference in the incidences of abnormalities between the groups. No significant difference was found in the Zn content of fetal tissue between the control and high-dose groups. These results showed that a 15-day repeated oral dose of ZnO(SM20(-)) was minimally maternotoxic at dose of 200 mg/kg/day and 400 mg/kg/day.


Subject(s)
Fetal Development/drug effects , Metal Nanoparticles , Zinc Oxide , Animals , Female , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Pregnancy , Rats , Rats, Sprague-Dawley , Toxicity Tests , Zinc Oxide/administration & dosage , Zinc Oxide/chemistry , Zinc Oxide/toxicity
14.
Int J Nanomedicine ; 9 Suppl 2: 159-71, 2014.
Article in English | MEDLINE | ID: mdl-25565834

ABSTRACT

This study investigated the potential adverse effects of zinc oxide nanoparticles ([ZnO(SM20(+)) NPs] zinc oxide nanoparticles, positively charged, 20 nm) on pregnant dams and embryo-fetal development after maternal exposure over the period of gestational days 5-19 with Sprague-Dawley rats. ZnO(SM20(+)) NPs were administered to pregnant rats by gavage at 0, 100, 200, and 400 mg/kg/day. All dams were subjected to a cesarean section on gestational day 20, and all of the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight after administration of 400 mg/kg/day NPs; reduced food consumption after administration of 200 and 400 mg/kg/day NPs; and decreased liver weight and increased adrenal glands weight after administration of 400 mg/kg/day NPs. However, no treatment-related difference in: number of corpora lutea; number of implantation sites; implantation rate (%); resorption; dead fetuses; litter size; fetal deaths and placental weights; and sex ratio were observed between the groups. On the other hand, significant decreases between treatment groups and controls were seen for fetal weights after administration of 400 mg/kg/day NPs. Morphological examinations of the fetuses demonstrated significant differences in incidences of abnormalities in the group administered 400mg/kg/day. Meanwhile, no significant difference was found in the Zn content of fetal tissue between the control and high-dose groups. These results showed that oral doses for the study with 15-days repeated of ZnO(SM20(+)) NPs were maternotoxic in the 200 mg/kg/day group, and embryotoxic in the 400 mg/kg/day group.


Subject(s)
Embryonic Development/drug effects , Metal Nanoparticles , Zinc Oxide , Animals , Female , Liver/drug effects , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Pregnancy , Rats , Rats, Sprague-Dawley , Toxicity Tests , Zinc Oxide/administration & dosage , Zinc Oxide/chemistry , Zinc Oxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...