Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 34(3): 671-678, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37087650

ABSTRACT

Understanding the effects of different fertilization treatments on microbial functional diversity in loess tableland wheat soil in south Shanxi Province can provide the theoretical basis from the perspective of microbial functional diversity for chemical fertilizer reduction, wheat yield increase, and soil fertility improvement in dryland soil. We conducted a long-term field experiment with seven fertilization treatments in winter wheat cultivation area of loess tableland in south Shanxi Province, including straw charcoal fertilizer (SF), bacterial fertilizer (BF), organic fertilizer (OF), humic acid fertilizer (HF), monitoring fertilizer (MF), farmer fertilizer (FF) and no fertilizer (CK). We employed Biolog-ECO microplate technique to investigate the differences of carbon source utilization capacity and functional diversity of soil microorganisms. The results showed that all the fertilization treatments could improve the metabolic activity and functional diversity of soil microbial community. Carbon source utilization was the most efficient in SF, with the overall soil microbial utilization ability of the 31 carbon sources and the utilization ability of different guilds of carbon sources being improved. Functional diversity, richness, and dominance based on microbial carbon sources utilization were significantly higher in SF treatment than that under other five treatments, and the evenness was higher than BF. Results of principal component analysis (PCA) and biclustering heatmap analysis showed that different fertilization treatments had significant effects on the metabolic function of microbial community. SF treatment could promote the functional diversity of soil microbial community, especially for the utilization of carbohydrates, carboxylic acids and amino acids. In conclusion, straw charcoal fertilizer had positive effects on soil microbial activity in wheat soil of loess tableland in south Shanxi Province.


Subject(s)
Soil , Triticum , Soil/chemistry , Triticum/metabolism , Charcoal , Soil Microbiology , Carbon/analysis , Bacteria , Fertilizers/analysis , Fertilization , Agriculture/methods
2.
Microorganisms ; 10(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36296258

ABSTRACT

Release of nanoceria (nCeO2) into the environment has caused much concern about its potential toxicity, which still remains poorly understood for soil microorganisms. In this study, nanoceria and cerium (III) nitrate at different doses (10, 100 and 500 mg/kg) were applied to bok choy (Brassica rapa subsp. chinensis), grown in potting soil, to investigate the responses of soil bacterial communities to nanoceria (NC) and ionic cerium (IC) applications. The results showed that bacterial richness was slightly increased in all cerium treatments relative to the negative control without cerium amendment (CK), but a significant increase was only found in IC500. The patterns of bacterial community composition, predicted functions and phenotypes of all NC treatments were significantly differentiated from IC and CK treatments, which was correlated with the contents of cerium, available potassium and phosphorus in soil. The co-occurrence network of bacterial taxa was more complex after exposure to ionic cerium than to nanoceria. The keystone taxa of the two networks were entirely different. Predicted functions analysis found that anaerobic and Gram-negative bacteria were enriched under nanoceria exposure. Our study implies that Proteobacteria and nitrifying bacteria were significantly enriched after exposure to nanoceria and could be potential biomarkers of soil environmental perturbation from nanoceria exposure.

3.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4439-4446, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34951285

ABSTRACT

Isolating dominant strains for the degradation of polycyclic aromatic hydrocarbons (PAHs) is of great practical significance for the restoration of ecosystem polluted by PAHs. A total of 11 strains with capacity of degrading PAHs were obtained from soil polluted by PAHs around a coking plant, by enrichment culture, acclimation, and plate isolation. Three of them with effective PAH-degrading capability were identified and screened out by morphological observation, physiobiochemical characterization, and 16S rRNA gene sequencing, and respectively, named as DJ-3, DJ-8 and DJ-10. Based on the results of 16S rRNA gene sequencing, DJ-3, DJ-8, and DJ-10 were identified as Pseudomonas sp. Klebsiella sp., and Bacillus sp. The degradation rate of phenanthrene (200 mg·L-1), pyrene (200 mg·L-1), and naphthol (160 mg·L-1) by three strains (DJ-3, DJ-8 and DJ-10) after seven-day incubation were 48.9%-65.9%, 38.9%-43.1%, and 57.6%-64.9%, respectively. The degradation rates of mixed PAHs sample (1200 mg·L-1) by three strains were 49.1%, 44.5%, and 53.9%, which were significantly higher than other eight strains, indicating that they were highly effective in PAHs degradation. There was no antagonistic relationship among the three strains. This study would lay a foundation for building efficient PAHs degrading strains and improve the in situ bioremediation of PAHs contaminated soil.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Ecosystem , RNA, Ribosomal, 16S/genetics , Soil Microbiology
4.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4467-4474, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34951288

ABSTRACT

Understanding the decomposition dynamics and driving factors of manure in the soil subjected to different reclaimed years could provide theoretical basis to rational utilization of manure and soil fertility improvement in coal mining area. Cattle manure and pig manure were mixed with soils subjected to different reclaimed years (one year, R1; 10 years, R10; and 30 years, R30) at the ratio of manure carbon to soil mass of 4 to 100, so as to examine manure decomposition characteristics using the nylon mesh bag (15 cm deep of soil buried) in the Shanxi coal mine reclamation area, with no manure addition as control (CK). Soil samples were collected at day 12, 23, 55, 218, 281, and 365 to measure the contents of soil manure residual, soil microbial biomass carbon (MBC), and dissolved organic carbon (DOC). The contributions of soil properties, manure properties, and hydrothermal condition to manure decomposition were quantified. The results showed that the decomposition rates of pig manure were significantly higher than cattle manure. The humification coefficient of pig manure (average 46.3%) was lower than that of cattle manure (average 71.7%). The humification coefficient of pig manure was significantly lower in the 30-year reclaimed soil (44.5%) compared to the 1-year and 10-year reclaimed soil (average 47.2%). There was no significant difference in the humification coefficient of cattle manure among the three reclaimed soils. The proportion and decomposition rate constant of labile carbon pool of pig manure and cattle manure were significantly different, with values of 52% and 26%, and 0.00085 and 0.00074 ℃-1, respectively. The positive effect of pig manure on MBC and DOC in reclaimed soil was significantly higher than that of cattle manure over 0-218 days, but no difference over 281-365 days. The magnitude of the enhancement of MBC and DOC in those three reclaimed soils after manure amendments showed a similar trend of R1 >R10 ≈ R30. Results of variance partitioning analysis showed that manure decomposition was mainly controlled by manure properties (17.9%) when considering soil properties, manure properties, and hydrothermal condition. In conclusion, the decomposition of pig manure but not cattle manure was regulated by reclamation year. Cattle manure, with higher humification coefficient than pig manure, was recommended for reclaimed mining area to improve soil fertility.


Subject(s)
Coal Mining , Soil , Animals , Carbon/analysis , Cattle , Dissolved Organic Matter , Manure , Mining , Swine
5.
PLoS One ; 15(3): e0229341, 2020.
Article in English | MEDLINE | ID: mdl-32150552

ABSTRACT

Very poor reclaimed soil quality and weak microbial activity occur in the reclamation area of a coal gangue landfill in the Loess Hills. The fourth and fifth years after farmland soil was reclaimed were studied, and the changes in and carbon source utilization characteristics of rhizosphere (R) and non-rhizosphere (S) soil microorganisms under organic and inorganic (OF), inorganic (F), and organic (O) fertilizer application and a control treatment (CK) in soybean (S) and maize (M) rotation systems were compared and analysed in Guljiao Tunlan, Shanxi Province, China. Biolog-EcoPlate technology was used to analyse the mechanism of soil characteristic change from the perspective of soil microbial metabolism function to provide a theoretical basis for reclamation and ecological reconstruction in this area. The average well colour development (AWCD) absorption and Shannon-Wiener index values of soybean and maize rhizosphere microorganisms were higher than those of non-rhizosphere microorganisms, and the mean value of the fertilizer treatment was higher than that for CK. Principal component analysis shows the main carbon sources that impact the functional diversity of the soybean rhizosphere and non-rhizosphere soil communities are a-cyclodextrin, a-D-lactose, ß-methyl D-glucoside, and glucose-1-phosphate and L-phenylalanine, while those for the maize rhizosphere and non-rhizosphere soil communities are D-cellobiose, glucose-1-phosphate, ß-methyl D-glucoside, methyl pyruvate, D-galactosate gamma lactone, D-mannitol, N-acetyl-D-glucosamine, D-galactosalonic acid, and L-serine. The comprehensive utilization score of the non-rhizosphere soil carbon source in the maize season increased with respect to that in the soybean season, and the maximum increase was 1.09 under the OF treatment. Redundancy analysis showed that the soil nutrient factors driving the changes in the metabolic function diversity index values of the rhizosphere and non-rhizosphere soil microbial communities in the different crop seasons in the reclamation area differed, but they were all related to the soil organic matter and available phosphorus. This may explain why OF treatment is the most beneficial to soil fertility under the rotation system in mining reclamation areas.


Subject(s)
Bacteria/metabolism , Biodiversity , Crop Production/methods , Fertilizers , Rhizosphere , Soil Microbiology , Zea mays/growth & development , Bacteria/classification , Coal , Microbiota , Waste Disposal Facilities , Zea mays/drug effects , Zea mays/metabolism , Zea mays/microbiology
6.
Ying Yong Sheng Tai Xue Bao ; 27(9): 3016-3022, 2016 Sep.
Article in Chinese | MEDLINE | ID: mdl-29732867

ABSTRACT

A located field experiment of applying phosphorus bacteria fertilizer for five years was carried out to study the effects of applying phosphorus bacteria fertilizer on the characteristics of microbial community structure in reclaimed soil. We studied the diversity of bacterial community using 16S rDNA gene sequencing and analyzed the relationship between bacterial community and Olsen-P, alkaline phosphatase. Seven treatments including control, chemical fertilizer, manure, manure and chemical fertilizer, chemical fertilizer and phosphorus bacteria, manure and phosphorus bacteria, and, manure,chemical fertilizer and phosphorus bacteria were conducted. The results showed that the relative abundance of Actinobacteria and Proteobacteria in reclaimed soil was the largest, which was 21.6%-32.2% and 13.8%-28.9%, respectively. Operational taxonomic units (OTU) number and Chao1 index of the treatment of manure, chemical fertilizer and phosphorus bacteria fertilizer was 809 and 26190, which was the highest. Phosphorus bacteria fertilizer could improve the relative abundance of soil Actinomycetes and Proteobacteria and decrease that of soil Acidobacteria, Thermotogae and Nitrospira, and had stimulatory effect on Nocardioides and Flexibacter. The treatment of manure, chemical fertilizer and phosphorus bacteria fertilizer could improve the Olsen-P and alkaline phosphatase activities in reclaimed soil. Correlation coefficients between Proteobacteria and Olsen-P, alkaline phosphatase were the highest (0.900 and 0.955). To a certain extent, Proteobacteria could be used as the sensitivity index of soil phosphorus availability.


Subject(s)
Bacteria/classification , Fertilizers , Manure , Phosphorus/chemistry , Soil Microbiology , Soil
7.
Ying Yong Sheng Tai Xue Bao ; 24(5): 1367-73, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-24015557

ABSTRACT

A field experiment with split-plot design was conducted to study the effects of watering, nitrogen fertilization, and their interactions on the growth, grain yield, and water- and nitrogen use efficiency of winter wheat. Four watering levels (0, 900, 1200, and 1500 m3 x hm(-2)) in main plots and five nitrogen fertilization levels (0, 90, 150, 210, and 270 kg N x hm(-2)) in sub-plots were designed. The results showed that the grain yield, nitrogen absorption, nitrogen use efficiency, and nitrogen productive efficiency of winter wheat increased with increasing level of watering, but the nitrogen use efficiency and nitrogen productive efficiency decreased with increasing nitrogen fertilization level. The grain yield, nitrogen absorption, and nitrogen harvest index were increased with increasing nitrogen fertilization level when the nitrogen application rate was 0-150 kg N x hm(-2), but not further increased significantly when the nitrogen application rate exceeded 150 kg x hm(-2). With the increasing level of watering, the water consumption amount (WCA) and the total water use efficiency increased, while the proportion of precipitation and soil water supply to WCA as well as the irrigation water use efficiency decreased. With the increasing level of nitrogen fertilization, the proportion of precipitation and watering amount to WCA increased, that of soil water supply to WCA decreased, and the total water use efficiency and irrigation water use efficiency decreased after an initial increase, with no significant differences among the treatments of 150, 210, and 270 kg N x hm(-2). It was considered that under our experimental condition, 1500 m3 x hm(-2) of watering amount plus 150 kg x hm(-2) of nitrogen fertilization could be the optimal combination for the high yielding and high efficiency.


Subject(s)
Biomass , Nitrogen/chemistry , Triticum/growth & development , Water/physiology , China , Ecosystem , Edible Grain/growth & development , Fertilizers , Nitrogen/metabolism , Seasons , Triticum/metabolism , Water/metabolism
8.
Ying Yong Sheng Tai Xue Bao ; 24(6): 1601-8, 2013 Jun.
Article in Chinese | MEDLINE | ID: mdl-24066546

ABSTRACT

In 2009-2011, a field experiment was conducted in a rain-fed winter wheat field in Southern Shanxi of China to study the effects of different fertilization modes on the change characteristics of soil moisture and nitrate-N contents in 0-200 cm layer and of soil available phosphorus (Oslen-P) and potassium contents in 0-40 cm layer during summer fallow period (from June to September). Three fertilization modes were installed, i. e., conventional fertilization (CF), recommended fertilization (RF), and ridge film furrow planting (RFFP) combined with straw mulch. The results showed that the rainfall in summer fallow period could complement the consumed water in 0-200 cm soil layer in dryland wheat field throughout the growth season, and more than 94% of the water storage was in 0-140 cm soil layer, with the fallow efficiency ranged from 6% to 27%. The rainfall in summer fallow period caused the soil nitrate-N moving downward. 357-400 mm rainfall could make the soil nitrate-N leaching down to 100 cm soil layer, with the peak in 20-40 cm soil layer. Straw mulching or plastic film with straw mulch in summer fallow period could effectively increase the Oslen-P and available K contents in 0-40 cm soil layer, and the accumulative increment in three summer fallow periods was 16-45% and 36-49%, respectively. Among the three modes, the binary coverage mode of RFFP plus furrow straw mulching had the best effect in maintaining soil water and fertility. The accumulative water storage and mineral N in 0-200 cm soil layer in three summer fallow periods were up to 215 mm and 90 kg x hm(-2), and the accumulative Oslen-P and available K contents in plough layer were increased by 2.7 mg x kg(-1) and 83 mg x kg(-1), respectively, being significantly higher than those in treatments CF and RF. There were no significant differences in the change characteristics in the soil moisture and nutrients between treatments CF and RF.


Subject(s)
Agriculture/methods , Minerals/analysis , Soil/chemistry , Triticum/growth & development , Water/analysis , China , Fertilizers , Nitrogen/analysis , Potassium/analysis , Rain , Seasons
9.
Ying Yong Sheng Tai Xue Bao ; 24(8): 2294-300, 2013 Aug.
Article in Chinese | MEDLINE | ID: mdl-24380351

ABSTRACT

Several strains of phosphate-solubilizing bacteria were isolated and screened from the crop rhizosphere of calcareous soil in Shanxi Province of China. After repeated isolation and purification, the strain W25 with strong phosphate-solubilizing activity was obtained, and identified as Rahnella sp., based on the morphological, physiological and biochemical properties and the analysis of 16S rRNA gene sequence. Further studies on the W25 showed that the maximum phosphate-solubilizing capability of the W25 on tricalium phosphate, aluminum phosphate and ferric phosphate reached 385.5, 110.4 and 216.6 mg x L(-1), respectively. In the liquid culture with aluminum phosphate and ferric phosphate, the solubilized phosphorous by the W25 was significantly negatively correlated with the liquid pH, with the correlation coefficient being 0.56 and 0.81, respectively. Among the carbon and nitrogen sources, glucose and ammonium nitrate were the optimum for the solubilization of tricalium phosphate by W25. The utilization of carbon source was in the order of glucose > lactose > sucrose > mannitose > starch, and that of nitrogen source was in the order of ammonium nitrate > ammonium chloride > ammonium sulfate > potassium nitrate > sodium nitrate. Different nitrogen sources had greater effects on the production of organic acids by W25. Formic acid and acetic acid would be produced when the nitrogen source was NH4+, oxalic acid and succinic acid would be produced when the nitrogen source was NO3(-), and citric acid would be extra produced when the ammonium nitrate was used as the nitrogen source.


Subject(s)
Phosphates/chemistry , Rahnella/isolation & purification , Rahnella/physiology , Soil Microbiology , Soil/chemistry , Calcium Carbonate/chemistry , Solubility
10.
Ying Yong Sheng Tai Xue Bao ; 22(8): 2038-44, 2011 Aug.
Article in Chinese | MEDLINE | ID: mdl-22097365

ABSTRACT

A 2-year (2008-2010) field experiment was conducted to study the effects of basal dressing nitrogen, topdressing nitrogen, and ridge film furrow planting on the 0-2 m soil moisture status and the grain yield and water use efficiency of winter wheat in rain-fed area of South Shanxi Province. In all treatments, the soil moisture status during winter wheat growth period had the same change trend, being increased steadily from pre-sowing to revival stage and decreased sharply from revival stage to heading stage, and then increased gradually till maturity stage. From revival stage to heading stage, the soil water consumption was the most. Increasing nitrogen basal application rate or topdressing nitrogen increased the soil water consumption, widened the soil moisture active layer, and deepened the relatively stable layer. Topdressing nitrogen increased grain yield significantly; ridge film furrow planting decreased soil water consumption obviously. The water use efficiency under ridge film furrow planting was 23.4% and 39.1% higher than that under conventional planting system in 2009 and 2010 (P < 0.01). The grain yield under ridge film furrow planting plus top-dressing nitrogen was 3643 kg x hm(-2), which was significantly higher than that under single ridge film furrow planting or topdressing nitrogen, displaying a preferable water-fertilizer coupling effect.


Subject(s)
Agriculture/methods , Nitrogen/pharmacology , Triticum/growth & development , Triticum/metabolism , Water/metabolism , Biomass , China , Fertilizers , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...