Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(1): 857-870, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38032529

ABSTRACT

Sulfate radical (SO4•-)-based advanced oxidation processes (AOPs) from sulfite activation have recently received attention for abatement of microorganic pollutants in the aquatic environments. Trace-level Co(II) has been demonstrated to be effective for promoting sulfite activation (simplified as the Co(II)/sulfite system) and the corresponding radical formation, yet this process is challenged by the limited valence inter-transformation of Co(II)/Co(III). In order to enhance this valence inter-transformation, a novel Co(II)/HPO42-/sulfite system is developed in this work, because HPO42-, as a typical radical scavenging agent, has the advantage of complexing with Co(II) without quenching effect. In this work, complexation of Co(II) with HPO42- can regulate the electronic structure of Co(II), accelerate electron transfer, and promote valence inter-transformation of Co(II)/Co(III) during the sulfite activation process. The Co(II)/HPO42-/sulfite system exhibits superior iohexol abatement performance under circumneutral conditions. For pH 8.0 and Co(II) dose of 1 µM, the iohexol abatement efficiency is as high as 98%, which is considerably higher than that of the Co(II)/sulfite system (50%). SO4•- is identified as the predominant reactive radical contributing to iohexol abatement. The presence of HPO42- broadens the pH adaptability of the Co(II)/sulfite system for iohexol abatement. In addition, the coexisting Cl- exerts an inhibitory effect on iohexol abatement while the other cations and anions show negligible effect. The Co(II)/HPO42-/sulfite system displays good reusability and adaptability towards various organic pollutants. This study highlights the important role of complexation of Co(II) with HPO42- in sulfite activation and provides a feasible idea for abatement of the microorganic pollutants.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Iohexol , Cobalt , Phosphates , Oxidation-Reduction , Sulfites/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...