Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Epilepsy Res ; 205: 107408, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39002389

ABSTRACT

BACKGROUND: The rate of spontaneous Intracerebral Hemorrhage (sICH) is rising among young Americans. Trends in acute seizure (AS) incidence in this age group is largely unknown. Further, the association of AS with mortality has not been reported in this age group. The aim of this study is to determine trends in AS among young individuals with sICH. METHODS: The Merative MarketScan® Commercial Claims and Encounters database, for the years 2005 through 2015, served as the data source for this retrospective in-hospital population study. This period was chosen as spontaneous ICH incidence increased among young individuals between 2005 and 2015. Our study population included patients aged 18-64 years with ICH identified using the International Classification of Diseases, Ninth and Tenth Revision (ICD-9/10) codes 430, 431, 432.0, 432.1, 432.9, I61, I61.0, I61.1, I61.2, I61.3, I61.4, I61.5, I61.6, I61.8, and I61.9, excluding those with a prior diagnosis of seizures (ICD-9/10 codes 345.x,780.3x, G40, G41, and R56.8). We computed yearly AS incidence, mortality (in patients with and without seizures), and analyzed trends. We applied a logistic regression model to determine the independent association of AS with mortality accounting for demographic and clinical variables. RESULTS: AS incidence increased linearly between 2005 (incidence rate: 8.1 %) and 2015 (incidence rate: 11.0 %), which represents a 26 % relative increase (P for trends <0.0001). In-hospital mortality rate was 14.3 % among those who developed AS and 11.5 % among those who did not have AS. Overall, between 2005 and 2015, in-hospital mortality decreased from 13.0 % to 9.7 % among patients without AS but remained unchanged among those with AS. Patients who developed AS were 10 % more likely to die than those who did not (OR: 1.10, 95 % confidence interval: 1.02-1.18). CONCLUSIONS: Between 2005 and 2015, the incidence of AS increased by nearly 26 % among young Americans with sICH. In-patient mortality remained unchanged among those who developed seizures but declined among those who did not. The occurrence of AS was independently associated with a 10 % higher risk of in-hospital death.

2.
Cureus ; 16(5): e61249, 2024 May.
Article in English | MEDLINE | ID: mdl-38939266

ABSTRACT

Prolonged hospital stays can significantly impede patients' recovery, negatively affecting anything from physical health via issues like hospital-acquired infections and increased complications due to immobility to psychological health. Several studies investigated the psychosocial impact of prolonged hospital stays, revealing a variety of patient perspectives, such as feeling uncertain and frustrated about their conditions, which can erode their trust in healthcare providers. Delayed discharges not only affect patients but also have multifaceted effects on healthcare providers, potentially reducing physician efficiency and contributing to higher rates of burnout among healthcare professionals. This article investigates the consequences of delayed versus early discharge on physicians, patients, and the overall hospital system. We conducted an extensive search through PubMed and Google Scholar using the keywords "delayed discharge," "hospital discharge," and "bed blocking" to identify all the recent studies highlighting the dynamics of patient discharge. Our results support the hypothesis that reducing delayed discharge rates will not only improve patient outcomes but also have widespread fiscal impacts. This review also outlines measures to reduce delayed discharges, ultimately leading to a significant enhancement in the healthcare system.

3.
Epilepsy Behav ; 157: 109835, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38820686

ABSTRACT

INTRODUCTION: Intracerebral hemorrhage represents 15 % of all strokes and it is associated with a high risk of post-stroke epilepsy. However, there are no reliable methods to accurately predict those at higher risk for developing seizures despite their importance in planning treatments, allocating resources, and advancing post-stroke seizure research. Existing risk models have limitations and have not taken advantage of readily available real-world data and artificial intelligence. This study aims to evaluate the performance of Machine-learning-based models to predict post-stroke seizures at 1 year and 5 years after an intracerebral hemorrhage in unselected patients across multiple healthcare organizations. DESIGN/METHODS: We identified patients with intracerebral hemorrhage (ICH) without a prior diagnosis of seizures from 2015 until inception (11/01/22) in the TriNetX Diamond Network, using the International Classification of Diseases, Tenth Revision (ICD-10) I61 (I61.0, I61.1, I61.2, I61.3, I61.4, I61.5, I61.6, I61.8, and I61.9). The outcome of interest was any ICD-10 diagnosis of seizures (G40/G41) at 1 year and 5 years following the first occurrence of the diagnosis of intracerebral hemorrhage. We applied a conventional logistic regression and a Light Gradient Boosted Machine (LGBM) algorithm, and the performance of the model was assessed using the area under the receiver operating characteristics (AUROC), the area under the precision-recall curve (AUPRC), the F1 statistic, model accuracy, balanced-accuracy, precision, and recall, with and without seizure medication use in the models. RESULTS: A total of 85,679 patients had an ICD-10 code of intracerebral hemorrhage and no prior diagnosis of seizures, constituting our study cohort. Seizures were present in 4.57 % and 6.27 % of patients within 1 and 5 years after ICH, respectively. At 1-year, the AUROC, AUPRC, F1 statistic, accuracy, balanced-accuracy, precision, and recall were respectively 0.7051 (standard error: 0.0132), 0.1143 (0.0068), 0.1479 (0.0055), 0.6708 (0.0076), 0.6491 (0.0114), 0.0839 (0.0032), and 0.6253 (0.0216). Corresponding metrics at 5 years were 0.694 (0.009), 0.1431 (0.0039), 0.1859 (0.0064), 0.6603 (0.0059), 0.6408 (0.0119), 0.1094 (0.0037) and 0.6186 (0.0264). These numerical values indicate that the statistical models fit the data very well. CONCLUSION: Machine learning models applied to electronic health records can improve the prediction of post-hemorrhagic stroke epilepsy, presenting a real opportunity to incorporate risk assessments into clinical decision-making in post-stroke care clinical care and improve patients' selection for post-stroke epilepsy research.

4.
Cureus ; 16(3): e57197, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38681464

ABSTRACT

Objective Spinal fusions are gaining popularity as a means of treating spinal deformity and instability from a range of pathologies. The prevalence of glucocorticoid use has also increased in recent decades, and their systemic effects are well-documented. Although commonly used in the preoperative period, the effects of steroids on outcomes among patients undergoing spinal fusions are inadequately described. This study compares the odds of developing complications among patients who underwent single-level lumbar fusions with and without preoperative glucocorticoid use in hopes of establishing more evidence-based parameters for guiding preoperative steroid use. Methods The TriNetX multi-institutional electronic health record database was used to perform a retrospective, propensity score-matched analysis of clinical outcomes of two cohorts of patients who underwent posterior or posterolateral single-level lumbar fusions with and without interbody fusion, those who used glucocorticoids for at least one week within a year of fusion and those who did not. The outcomes of interest were examined within 30 days of the operation and included death, reoperation, deep or superficial surgical site infection (SSI), pneumonia, reintubation, ventilator dependence, tracheostomy, acute kidney injury (AKI), renal insufficiency, pulmonary embolism (PE) or deep venous thrombosis (DVT), urinary tract infection (UTI), emergency department (ED) visit, sepsis, and myocardial infarction (MI). Results The odds of developing pneumonia within 30 days of spinal fusion in the cohort that used glucocorticoids within one year of operation compared to the cohort without glucocorticoid use was 0.67 (p≤0.001, 95% CI: 0.59-0.69). The odds of requiring a tracheostomy within 30 days of spinal fusion in the cohort that used glucocorticoids within one year of operation compared to the cohort without glucocorticoid use was 0.39 (p≤0.001, 95% CI: 0.26-0.60). The odds of reoperation, deep and superficial SSI, and ED visits within 30 days of operation were significantly higher for the same glucocorticoid-receiving cohort, with odds ratios of 1.4 (p=0.003, 95% CI: 1.11-1.65), 1.86 (p≤0.001, 95% CI: 1.31-2.63), 2.28 (p≤0.001, 95% CI: 1.57-3.31), and 1.25 (p≤0.001, 95% CI: 1.17-1.33), respectively. After propensity score-matching, there was no significant difference between the odds of death, DVT, PE, MI, UTI, AKI, sepsis, reintubation, and ventilator dependence between the two cohorts. Conclusion In support of much of the current literature regarding preoperative glucocorticoid use and rates of complications, patients who underwent a single-level lumbar fusion and have used glucocorticoids for at least a week within a year of operation experienced significantly higher odds of reoperation, deep and superficial SSI, and ED visits. However, these patients using glucocorticoids were also found to have lower odds of developing pneumonia, renal insufficiency, and tracheostomy requirement than those who did not use steroids within a year of surgery.

5.
Sci Rep ; 13(1): 11600, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37463993

ABSTRACT

A long-standing goal of CMOS-based logic devices is to meet the needs of key markets, including ultralow-power operation and high operation speed, along with the continuing miniaturization of the architecture. However, despite significant progress in their development, conventional CMOS-based devices still suffer from drawbacks such as introducing large unintended leakage currents and volatile behavior. Thus, reconfigurable logic gates based on magnetic domain (MD) have emerged as a highly promising option because they offer fast operation speeds, nonvolatility, and diverse logic functions in a single-device configuration. Here, we address multiple reconfigurable MD logic gates in a single two-channel Hall bar device by varying the voltage-driven read-current directions and selecting a non-inverting or inverting comparator in W/CoFeB/MgO/Ta stacks. The non-volatile MD switching behavior induced by spin-orbit torque significantly affects our logic gate functions, which are not necessarily synchronized to a single clock. By adapting MD switching by spin-orbit torque and anomalous Hall effect voltage outputs, we identified eight reconfigurable logic gates, including AND, NAND, NOR, OR, INH, Converse INH, Converse IMP, and IMP, in a single device. These experimental findings represent a significant step forward in a wide range of MD-based logic applications in the near future.

6.
Sci Data ; 10(1): 69, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732516

ABSTRACT

We present a near-real-time global gridded daily CO2 emissions dataset (GRACED) throughout 2021. GRACED provides gridded CO2 emissions at a 0.1° × 0.1° spatial resolution and 1-day temporal resolution from cement production and fossil fuel combustion over seven sectors, including industry, power, residential consumption, ground transportation, international aviation, domestic aviation, and international shipping. GRACED is prepared from the near-real-time daily national CO2 emissions estimates (Carbon Monitor), multi-source spatial activity data emissions and satellite NO2 data for time variations of those spatial activity data. GRACED provides the most timely overview of emissions distribution changes, which enables more accurate and timely identification of when and where fossil CO2 emissions have rebounded and decreased. Uncertainty analysis of GRACED gives a grid-level two-sigma uncertainty of value of ±19.9% in 2021, indicating the reliability of GRACED was not sacrificed for the sake of higher spatiotemporal resolution that GRACED provides. Continuing to update GRACED in a timely manner could help policymakers monitor energy and climate policies' effectiveness and make adjustments quickly.

7.
Nanotechnology ; 34(9)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36541520

ABSTRACT

Tunnel field-effect transistors (TFETs) have garnered great interest as an option for the replacement of metal-oxide-semiconductor field-effect transistors owing to their extremely low off-current and fast switching suitable for low-power-consumption applications. However, conventional doped TFETs have the disadvantage of introducing undesirable random dopant fluctuation (RDF) events, which cause a large variance in the threshold voltage and ambipolar leakage current at negative gate voltages. In this study, a simple approach for charge plasma-based doping-less TFETs (DL-TFETs), including the Ge/Si bilayer frame, which affects the RDF and low on-current issues, was developed by the commercially available Silvaco Atlas device simulator. The use of the Ge/Si bilayer enhances the on-current and point subthreshold swing to 1.4 × 10-6A and 16.6 mV dec-1, respectively. In addition, the dependencies of the Ge/Si junction boundary position and Ge content were examined systematically to attain a firm understanding of the electrical features in DL-TFETs.

8.
Anticancer Res ; 42(7): 3445-3452, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35790271

ABSTRACT

BACKGROUND/AIM: Copine 1 (CPNE1) is a calciumdependent phospholipid protein that has been shown to regulate the AKT serine/threonine kinase 1 (AKT) signaling pathway to mediate its function in various cell types. However, little is known about the physiological function of this protein in breast cancer cells. We aimed to investigate the prognostic and therapeutic value of CPNE1 in erb-b2 receptor tyrosine kinase 2 [human epidermal growth factor receptor 2 (HER2)]-positive and luminal A subtypes of breast cancer. MATERIALS AND METHODS: Western blotting, cell viability, wound-healing and invasion assays were performed on SK-BR3 and MCF-7 breast cancer cells with forced overexpression of CPNE1. CPNE1 immunohistochemical (IHC) staining and bioinformatics analysis were performed on specimens from patients with breast cancer and compared to normal breast samples. RESULTS: CPNE1 overexpression promoted AKT activation, and increased cell viability and cell motility in SK-BR3 and MCF-7 breast cancer cells. In addition, invasive capabilities of SK-BR3 cells were increased by the overexpression of CPNE1. The expression levels of CPNE1 were higher in HER2-positive and luminal A subtypes of human breast cancer tissues compared with those in adjacent normal tissues. Furthermore, CPNE1 expression was increased in RNA microarray analysis of samples from patients with breast cancer compared to normal breast samples. CONCLUSION: CPNE1 may play a key role in the pathophysiology of HER2-positive and luminal A subtypes of breast cancer.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Humans , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Transcriptional Activation , Up-Regulation
9.
Sci Rep ; 12(1): 5496, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361832

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is accompanied by chronic neurological sequelae such as cognitive decline and mood disorder, but the underlying mechanisms have not yet been elucidated. We explored the possibility that the brain-infiltrating SARS-CoV-2 spike protein contributes to the development of neurological symptoms observed in COVID-19 patients in this study. Our behavioral study showed that administration of SARS-CoV-2 spike protein S1 subunit (S1 protein) to mouse hippocampus induced cognitive deficit and anxiety-like behavior in vivo. These neurological symptoms were accompanied by neuronal cell death in the dorsal and ventral hippocampus as well as glial cell activation. Interestingly, the S1 protein did not directly induce hippocampal cell death in vitro. Rather, it exerted neurotoxicity via glial cell activation, partially through interleukin-1ß induction. In conclusion, our data suggest a novel pathogenic mechanism for the COVID-19-associated neurological symptoms that involves glia activation and non-cell autonomous hippocampal neuronal death by the brain-infiltrating S1 protein.


Subject(s)
COVID-19 , Cognitive Dysfunction , Animals , Antibodies, Viral/metabolism , Anxiety , Cell Death , Cognition , Cognitive Dysfunction/etiology , Hippocampus/metabolism , Humans , Membrane Glycoproteins/metabolism , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
10.
ACS Appl Mater Interfaces ; 14(4): 5203-5210, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35050584

ABSTRACT

Recent studies have demonstrated that copper (I) thiocyanate (CuSCN) has huge potential as a hole extraction material (HEM) for perovskite solar cells. Here, we used CuSCN as a HEM and analyzed its relationships with a methylammonium lead iodide (MAPbI3) perovskite layer. The CuSCN dissolved in diethyl sulfide (DES) was spin-coated on the MAPbI3 layer. For high-quality and dense CuSCN layers, post-annealing was carried out at various temperatures and times. However, the unwanted dissociation of MAPbI3 to PbI2 was observed due to the post-annealing for a long time at elevated temperatures. In addition, DES, which is used as a CuSCN solvent, is a polar solvent that damages the surface of MAPbI3 perovskites and causes poor interfacial properties between the perovskite layer and HEM. To solve this problem, the effect of the molar ratio of methylammonium iodide (MAI) and PbI2 in the MAPbI3 precursor solution was investigated. The excess MAI molar ratio in the MAPbI3 precursor solution reduced MAPbI3 surface damage despite using DES polar solvent for CuSCN solution. In addition, dissociation of MAPbI3 to PbI2 following an adequate post-annealing process was well suppressed. The excess MAI molar ratio in the MAPbI3 precursor could be compensated for the MA loss and effectively suppress phase separation from MAPbI3 to MAI + PbI2 during post-annealing. The efficiency based on the normal planar structure of CuSCN/MAPbI3 (using excess MAI)/TiO2 was approximately 17%. The CuSCN-based MAPbI3 device shows more optimized stability than the conventional spiro-OMeTAD under damp heat (85 °C and 85% relative humidity) conditions because of the robust inorganic HEM.

11.
Biol Psychiatry ; 91(8): 740-752, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34952697

ABSTRACT

BACKGROUND: NMDA receptor (NMDAR) hypofunction has been implicated in several psychiatric disorders with impairment of cognitive flexibility. However, the molecular mechanism of how NMDAR hypofunction with decreased NMDAR tone causes the impairment of cognitive flexibility has been minimally understood. Furthermore, it has been unclear whether hippocampal astrocytes regulate NMDAR tone and cognitive flexibility. METHODS: We employed cell type-specific genetic manipulations, ex vivo electrophysiological recordings, sniffer patch recordings, cutting-edge biosensor for norepinephrine, and behavioral assays to investigate whether astrocytes can regulate NMDAR tone by releasing D-serine and glutamate. Subsequently, we further investigated the role of NMDAR tone in heterosynaptic long-term depression, metaplasticity, and cognitive flexibility. RESULTS: We found that hippocampal astrocytes regulate NMDAR tone via BEST1-mediated corelease of D-serine and glutamate. Best1 knockout mice exhibited reduced NMDAR tone and impairments of homosynaptic and α1 adrenergic receptor-dependent heterosynaptic long-term depression, which leads to defects in metaplasticity and cognitive flexibility. These impairments in Best1 knockout mice can be rescued by hippocampal astrocyte-specific BEST1 expression or enhanced NMDAR tone through D-serine supplement. D-serine injection in Best1 knockout mice during initial learning rescues subsequent reversal learning. CONCLUSIONS: These findings indicate that NMDAR tone during initial learning is important for subsequent learning, and hippocampal NMDAR tone regulated by astrocytic BEST1 is critical for heterosynaptic long-term depression, metaplasticity, and cognitive flexibility.


Subject(s)
Astrocytes , Receptors, N-Methyl-D-Aspartate , Animals , Astrocytes/metabolism , Bestrophins/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Humans , Mice , Receptors, N-Methyl-D-Aspartate/physiology , Serine/metabolism
12.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806698

ABSTRACT

Nuclear factor of activated T cells (NFAT5) is a well-known transcription factor that regulates the expression of genes involved in osmotic stress. However, the role of NFAT5 in inflammatory pain remains unknown. Here, we studied the function of NFAT5 in inflammatory pain using NFAT5-heterozygous (Het) mice. To study inflammatory pain, we injected 10 µL of 2% formalin into the right hind paws of mice and monitored pain behaviors, such as licking, lifting, and flinching, for 60 min. After the first 15 min (phase I), there were no significant differences in pain behaviors between wild-type (WT) and NFAT5-Het mice. However, from 15-60 min (phase II), NFAT5-Het mice displayed significantly fewer pain behaviors compared to WT mice. Further, the expression levels of inflammatory-pain-related factors, including c-Fos, phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated n-methyl-D-aspartate receptor subunit 2B (p-NR2B), were significantly elevated in the spinal dorsal neurons of formalin-treated WT mice but was not elevated in NFAT5-Het mice. Similarly, c-Fos, p-ERK, and p-NR2B levels were significantly higher in glutamate-treated PC12 neuronal cells but were not affected by Nfat5 silencing in glutamate-treated PC12 cells. Altogether, our findings suggest that NFAT5 deficiency may mitigate formalin-induced inflammatory pain by upregulating mammalian target of rapamycin (mTOR) expression and downregulating its downstream factors in spinal dorsal neurons. Therefore, NFAT5 is a potential therapeutic target for the treatment of inflammatory pain.


Subject(s)
Formaldehyde/pharmacology , Inflammation/metabolism , Pain/chemically induced , Pain/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , PC12 Cells , Pain Measurement/methods , Rats , Spinal Cord/metabolism , Up-Regulation/physiology
13.
Sci Rep ; 10(1): 16286, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33005014

ABSTRACT

Three-dimensional stackable memory frames involving the integration of two-terminal scalable crossbar arrays are expected to meet the demand for high-density memory storage, fast switching speed, and ultra-low power operation. However, two-terminal crossbar arrays introduce an unintended sneak path, which inevitably requires bidirectional nonlinear selectors. In this study, the advanced threshold switching (TS) features of ZnTe chalcogenide material-based selectors provide bidirectional threshold switching behavior, nonlinearity of 104, switching speed of less than 100 ns, and switching endurance of more than 107. In addition, thermally robust ZnTe selectors (up to 400 â„ƒ) can be obtained through the use of nitrogen-annealing treatment. This process can prevent possible phase separation phenomena observed in generic chalcogenide materials during thermal annealing which occurs even at a low temperature of 250 â„ƒ. The possible characteristics of the electrically and thermally advanced TS nature are described by diverse structural and electrical analyses through the Poole-Frankel conduction model.

14.
Sci Rep ; 10(1): 17451, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060735

ABSTRACT

Because inflammation in osteoarthritis (OA) is related to the Toll-like receptor 4 (TLR4) signaling cascades, TLR4 is a reasonable target for developing therapeutics for OA. Thus, we investigated whether TAP2, a peptide antagonist of TLR4, reduces the monoiodoacetate (MIA)-induced arthritic pain and cartilage degradation in rats. TLR4 expression of human OA chondrocytes and synoviocytes and the knee joint tissue of MIA-induced arthritis were evaluated. MIA-induced arthritic model using Sprague-Dawley rats (6 week-old-male) were treated with TAP2, a TLR4 antagonist, and evaluated with behavioral test, immunohistochemistry, and quantitative PCR. TLR4 was highly expressed in the knee joints of patients with OA and the MIA-induced rat model. Further, a single intraarticular injection of TAP2 (25 nmol/rat) molecules targeting TLR4 on day 7 after MIA injection dramatically attenuated pain behavior for about 3 weeks and reduced cartilage loss in the knee joints and microglial activation in the spinal dorsal horns. Likewise, the mRNA levels of TNFα and IL-1ß, reactive oxygen species, and the expression of MMP13 in the knee joints of TAP2-treated rats was significantly decreased by TAP2 treatment compared with the control. Moreover, interestingly, the duration of OA pain relief by TAP2 was much longer than that of chemical TLR4 antagonists, such as C34 and M62812. In conclusion, TAP2 could effectively attenuate MIA-induced arthritis in rats by blocking TLR4 and its successive inflammatory cytokines and MMP13. Therefore, TAP2 could be a prospective therapeutic to treat patients with OA.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 3/chemistry , Osteoarthritis/drug therapy , Pain/drug therapy , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Cartilage, Articular/cytology , Cells, Cultured , Chondrocytes/cytology , Disease Models, Animal , Humans , Inflammation , Iodoacetic Acid , Male , Matrix Metalloproteinase 13/chemistry , Matrix Metalloproteinase Inhibitors/chemistry , Osteoarthritis/chemically induced , Pain Management , Peptides/chemistry , Rats , Rats, Sprague-Dawley , Synoviocytes/cytology
15.
Adv Clin Exp Med ; 29(7): 819-824, 2020 07.
Article in English | MEDLINE | ID: mdl-32735402

ABSTRACT

BACKGROUND: Conservative treatment, such as electrical stimulation and steroid injection, have been employed in an attempt to improve symptoms after peripheral nerve injury, without significant success. Although non-invasive and safe extracorporeal shockwave therapy (ESWT) can be a practical alternative, the therapeutic effects of ESWT on peripheral nerve remyelination has not been established. OBJECTIVES: To investigate the effects of ESWT on peripheral nerve remyelination and gait function for 5 weeks in a sciatic nerve crush model. MATERIAL AND METHODS: In total, we divided 97 rats into 5 groups: group 1 - a healthy negative control group; group 2 - 3 weeks after sciatic nerve crush and 3 sessions of ESWT; group 3 - 5 weeks after crush injury with 3 sessions of ESWT; group 4 - 3 weeks after crush injury with no ESWT; and group 5 - 5 weeks after crush injury with no ESWT. The focused ESWT was applied to the unilateral sciatic nerve injury site. One session consisted of 1,500 stimuli, and the session were performed at intervals of 1 week. RESULTS: The degree of myelination and expression of myelin basic protein at the distal part of the injured sciatic nerve tended to increase in the ESWT groups compared with the no-ESWT groups 3 and 5 weeks after crush injury. Regarding the functional gait recovery, the print width and area of the injured leg in the ESWT groups was significantly larger than that in the no-ESWT groups 3 and 5 weeks after crush injury. CONCLUSIONS: The ESWT may enhance peripheral nerve remyelination and gait function in a nerve crush model. Long-term follow-up after ESWT and investigation of molecular mechanisms will be needed to confirm these therapeutic effects.


Subject(s)
Extracorporeal Shockwave Therapy , Remyelination , Animals , Gait , Nerve Crush , Nerve Regeneration , Rats , Recovery of Function , Sciatic Nerve
16.
Behav Sci (Basel) ; 10(7)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664685

ABSTRACT

This study aimed to empirically examine what effects confidence, social, and economic benefit factors have on continuous relationship orientation through the mediation of service trust, service satisfaction, and customer engagement factors in the auto maintenance and repair service sector. This study carried out a questionnaire survey with 319 customers using auto maintenance and repair service and verified hypotheses. As a result of the analysis, the confidence and social benefits of auto maintenance and repair service affected service trust, while the confidence and economic benefits affected service satisfaction. Service trust did not affect customer engagement or long-term relationship continuity but affected them when it mediated service satisfaction. Consequently, it was revealed that confidence benefit should be consolidated and that professionalism or service quality excellence in maintenance or repair becomes the most important factors to produce customer engagement or long-term relationship continuity in the auto maintenance and repair service. Although it is vital to improve trust or service, it is confirmed that a relationship can be maintained only if the auto maintenance or repair service is satisfactory.

17.
Int J Mol Sci ; 21(7)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231148

ABSTRACT

Several studies have shown that brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1), an important molecule for maintaining circadian rhythms, inhibits the growth and metastasis of tumor cells in several types of cancer, including lung, colon, and breast cancer. However, its role in glioblastoma has not yet been established. Here, we addressed the function of BMAL1 in U87MG glioblastoma cells with two approaches-loss and gain of function. In the loss of function experiments, cell proliferation in U87MG cells transfected with small interfering RNA (siRNA) targeting BMAL1 was increased by approximately 24% (small interfering (si)-NC 0.91 ± 0.00 vs. si-BMAL1 1.129 ± 0.08) via upregulation of cyclin B1. In addition, cell migration and invasion of BMAL1 siRNA-treated glioblastoma cells were elevated by approximately 20% (si-NC 51.00 ± 1.53 vs. si-BMAL161.33 ± 0.88) and 209% (si-NC 21.28 ± 1.37 vs. si-BMAL1 44.47 ± 3.48), respectively, through the accumulation of phosphorylated-AKT (p-AKT) and matrix metalloproteinase (MMP)-9. Gain of function experiments revealed that adenovirus-mediated ectopic expression of BMAL1 in U87MG cells resulted in a 19% (Adenovirus (Ad)-vector 0.94± 0.03 vs. Ad-BMAL1 0.76 ± 0.03) decrease in cell proliferation compared with the control via downregulation of cyclin B1 and increased early and late apoptosis due to changes in the levels of BCL2-associated X protein (BAX), B-cell lymphoma 2 (BCL-2), and cleaved caspase-3. Likewise, cell migration and invasion were attenuated by approximately 24% (Ad-vector 55.00 ± 0.00 vs. Ad-BMAL1 41.83 ± 2.90) and 49% (Ad-vector 70.01 ± 1.24 vs. Ad-BMAL1 35.55 ± 1.78), respectively, in BMAL1-overexpressing U87MG cells following downregulation of p-AKT and MMP-9. Taken together, our results suggest that BMAL1 acts as an anti-cancer gene by altering the proliferation, migration, and invasion of glioblastoma cells. Therefore, the BMAL1 gene could be a potential therapeutic target in the treatment of glioblastoma.


Subject(s)
ARNTL Transcription Factors/metabolism , Brain Neoplasms/metabolism , Cyclin B1/metabolism , Glioblastoma/metabolism , Matrix Metalloproteinase 9/metabolism , Proto-Oncogene Proteins c-akt/metabolism , ARNTL Transcription Factors/analysis , ARNTL Transcription Factors/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cyclin B1/analysis , Down-Regulation , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Matrix Metalloproteinase 9/analysis , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/analysis , RNA Interference
18.
Article in English | MEDLINE | ID: mdl-32290297

ABSTRACT

The purpose of this study was to investigate the effect of continuous case management with a flexible approach on the prevention of suicide by suicide reattempt in a real clinical setting. The subjects in this study were 526 suicide attempters who visited emergency rooms in a teaching hospital in South Korea. Subjects were provided a continuous case management program with a flexible approach according to the severity of their suicide risk and needs. During the entire observation period (from 182 days to 855 days, mean = 572 ± 254), 18 patients (3.7%) died by suicide reattempt: Eight patients (2.27%) in the case management group and 10 patients (7.35%) in the no-case management group. The Cox regression analysis showed that the case management group had a 75% lower risk of death from suicide attempts than the no-case management group (HR = 0.34, 95% CI = 0.13-0.87). This result was shown to be more robust after adjusting for confounding factors such as gender, age, psychiatric treatment, suicide attempts, and family history of suicide (adjusted HR = 0.27, 95% CI = 0.09-0.83). This study was conducted in a single teaching hospital and not a randomized controlled one. A flexible and continuous case management program for suicide attempters is effective for preventing death by suicide reattempts.


Subject(s)
Case Management , Suicide, Attempted , Adult , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Republic of Korea/epidemiology , Risk , Risk Factors , Young Adult
19.
Int J Nanomedicine ; 15: 2379-2390, 2020.
Article in English | MEDLINE | ID: mdl-32308389

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is the most common type of joint disease associated with cartilage breakdown. However, the role played by mitochondrial dysfunction in OA remains inadequately understood. Therefore, we investigated the role played by p66shc during oxidative damage and mitochondrial dysfunction in OA and the effects of p66shc downregulation on OA progression. METHODS: Monosodium iodoacetate (MIA), which is commonly used to generate OA animal models, inhibits glycolysis and biosynthetic processes in chondrocytes, eventually causing cell death. To observe the effects of MIA and poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles, histological analysis, immunohistochemistry, micro-CT, mechanical paw withdrawal thresholds, quantitative PCR, and measurement of oxygen consumption rate and extracellular acidification rate were conducted. RESULTS: p-p66shc was highly expressed in cartilage from OA patients and rats with MIA-induced OA. MIA caused mitochondrial dysfunction and reactive oxygen species (ROS) production, and the inhibition of p66shc phosphorylation attenuated MIA-induced ROS production in human chondrocytes. Inhibition of p66shc by PLGA-based nanoparticles-delivered siRNA ameliorated pain behavior, cartilage damage, and inflammatory cytokine production in the knee joints of MIA-induced OA rats. CONCLUSION: p66shc is involved in cartilage degeneration in OA. By delivering p66shc-siRNA-loaded nanoparticles into the knee joints with OA, mitochondrial dysfunction-induced cartilage damage can be significantly decreased. Thus, p66shc siRNA PLGA nanoparticles may be a promising option for the treatment of OA.


Subject(s)
Mitochondria/pathology , Osteoarthritis/drug therapy , RNA, Small Interfering/pharmacology , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Cartilage, Articular/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Cytokines/metabolism , Disease Models, Animal , Humans , Iodoacetic Acid/toxicity , Knee Joint/diagnostic imaging , Knee Joint/drug effects , Male , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Osteoarthritis/chemically induced , Osteoarthritis/pathology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , RNA, Small Interfering/administration & dosage , Rats, Sprague-Dawley
20.
Eur Addict Res ; 26(6): 335-345, 2020.
Article in English | MEDLINE | ID: mdl-32172235

ABSTRACT

AIMS: The aim of the current study was to develop and validate a short-form of the internet overuse screening questionnaire (IOS-Qs). METHODS: A total of 571 adults were recruited from a representative, stratified, and multistage cluster sample. Among participants, 188 and 383 were used in the development and validation of the IOS-Qs, respectively. RESULTS: Experts' ratings and Rasch model analyses led to the selection of 8 items from the IOS-Qs; latent-class analysis using these 8 items revealed an estimated prevalence of 8.6% (33 out of 383) of problematic internet over-users. Problematic internet over-users were positively associated with a 1-year prevalence rate of any mental disorder (OR 3.08, p = 0.008), mood disorder (OR 7.11, p = 0.003), and depressive disorder (OR 5.22, p = 0.016). The receiver operating characteristic curves identified an optimal cutoff score of 9.5 for differentiating problematic internet over-users from unproblematic internet users with 94% sensitivity and 94% specificity. CONCLUSION: The results suggest that the IOS-Qs was valid, and items including social isolation were crucial to the brief distinction of at-risk internet users. Because of its brevity, the questionnaire can be effectively administered as a large-scale survey.


Subject(s)
Internet Addiction Disorder , Mass Screening , Surveys and Questionnaires , Adult , Female , Humans , Internet Addiction Disorder/diagnosis , Male , Mass Screening/methods , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...