Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(18): 11376-11390, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425052

ABSTRACT

Purple sweet potato polysaccharides (PSPP) play an important role in regulating the gut microbiota, modulating intestinal immunity and ameliorating colonic inflammation. In this study, the impact of two PSPPs (PSWP-I and PSAP-I) on the metabolomic profiling of feces from dextran sulfate sodium (DSS)-induced colitis mice was evaluated by ultra-high performance liquid chromatography coupled with triple time-of-flight tandem mass spectrometry (UPLC-Triple-TOF-MS/MS). Results indicated that there were twenty-five metabolites with significant changes and four remarkable metabolic pathways, i.e., cutin, suberine and wax biosynthesis, biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, and steroid hormone biosynthesis. Two key biomarkers of oleic acid and 17-hydroxyprogesterone were screened that responded to PSPPs in colitis mice. The identified metabolites were correlated with the amelioration of intestinal immune function and the modulation of the gut microbiota. Nine pro-inflammatory and eight anti-inflammatory compounds responded to PSPPs, which were related to Bacteroides, norank_f__Clostridiales_vadinBB60_group, unclassified_o__Bacteroidales, Rikenella and Lachnospiraceae_UCG-001. Moreover, PSWP-I and PSAP-I had different regulating effects on intestinal metabolites. Our results revealed a possible metabolomic mechanism of PSPPs to regulate intestinal inflammation function.

2.
J Food Biochem ; 46(2): e14049, 2022 02.
Article in English | MEDLINE | ID: mdl-34981522

ABSTRACT

In the present study, the ameliorative effects of polyphenols from purple potato leaves (PSPLP) on hyperuricemia were investigated. HPLC-MS analysis showed that PSPLP was mainly composed of caffeoylquinic acid derivatives (84%). PSPLP inhibited the levels of cytokines (IL-1ß, IL-6, and TNF-α) in monosodium urate-induced RAW264.7 cells. In vivo, PSPLP significantly inhibited the level of uric acid in hyperuricemia mice from 209.6 to 166.6 µM, and significantly interfered with the activities of xanthine oxidase (XOD) and adenosine deaminase in liver, the activity of XOD decreased from 13.5 to 11.6 U/gprot. PSPLP can decrease serum creatinine level from 105 to 59 µM, and urea nitrogen level from 21.9 to 14.1 mM, which can effectively protect kidney. These results provide a reference for future research and application of PSPLP as a functional food to intervene hyperuricemia and associated inflammation. PRACTICAL APPLICATIONS: This study evaluated the effect of polyphenols from purple potato leaves (PSPLP) on hyperuricemia. The results suggested that PSPLP has an important role in the intervention of hyperuricemia and hyperuricemic-related inflammation or renal injury, and can be used in the application of functional foods. These results provided a basis for further study on the biological activities of polyphenols from purple sweet potato leaves.


Subject(s)
Hyperuricemia , Solanum tuberosum , Animals , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Inflammation/drug therapy , Kidney , Mice , Plant Leaves , Polyphenols/pharmacology
3.
J Food Biochem ; 45(9): e13869, 2021 09.
Article in English | MEDLINE | ID: mdl-34287964

ABSTRACT

In this study, anthocyanins were extracted and purified from purple sweet potato anthocyanins (PSPA) and the alleviative effect of PSPA on doxorubicin (DOX)-induced cardiotoxicity was investigated. High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) results showed that 10 kinds of substances were identified in PSPA and the PSPA was mainly composed of cyanidin (62.9%) and peonidin (21.46%). In in vitro experiments, PSPA reduced the excessive release of inflammatory factors (NO and TNF-α) induced by DOX and decreased the secretion of trimethylamine oxide (TMAO), lactic dehydrogenase (LDH), and creatine kinase (CK) caused by myocardial injury. In in vivo experiments, PSPA inhibited the release of NO and MDA levels in heart tissue. Meanwhile, mice treated with PSPA decreased the levels of LDH, CK, TNF-α, and TMAO in serum and heart tissue when compared with the DOX group. In addition, the histopathological results of the heart tissue also showed a protective effect of PSPA on the pathological changes in heart. These results provide a reference for the application of PSPA as a functional food to intervene in DOX-induced cardiotoxicity. PRACTICAL APPLICATIONS: The effects of anthocyanins from purple sweet potato anthocyanins (PSPA) on doxorubicin (DOX)-induced cardiotoxicity were investigated in vitro and in vivo. The results indicated that PSPA could significantly ameliorate DOX-induced heart failure. The obtained results could provide the potential application of PSPA as an alternative therapy for cardiotoxicity caused by DOX in the functional food industry.


Subject(s)
Ipomoea batatas , Animals , Anthocyanins/pharmacology , Cardiotoxicity/prevention & control , Chromatography, High Pressure Liquid , Doxorubicin/toxicity , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...