Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(7): 1885-1894, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36723214

ABSTRACT

Since the high configurational entropy-driven structural stability of multicomponent oxide system was proposed Rost et al. in 2015, many experiments and simulations have been done to develop new multicomponent oxides. Although many notable findings have shown unique physical and chemical properties, high configurational entropy oxide systems that have more than 3 distinct cation sites are yet to be developed. By utilizing atomic-scale direct imaging with scanning transmission electron microscopy and AC-impedance spectroscopy analysis, we demonstrated for the first time that a multicomponent equimolar proton-conducting quadruple hexagonal perovskite-related Ba5RE2Al2ZrO13 (RE = rare earth elements) oxide system can be synthesized even when adding eight different rare earth elements. In particular, as the number of added elements was increased, i.e., as the configurational entropy was increased, we confirmed that the chemical stability toward CO2 was improved without a significant decrement of the proton conductivity. The findings in this work broaden the use of the crystal structure to which the multicomponent model can be applied, and a systematic study on the correlation between the configurational entropy and proton conductivity and/or chemical stability is noteworthy.

2.
ACS Appl Mater Interfaces ; 13(2): 2496-2506, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33398987

ABSTRACT

Solid oxide cells (SOCs) are mutually convertible energy devices capable of generating electricity from chemical fuels including hydrogen in the fuel cell mode and producing green hydrogen using electricity from renewable but intermittent solar and wind resources in the electrolysis cell mode. An effective approach to enhance the performance of SOCs at reduced temperatures is by developing highly active oxygen electrodes for both oxygen reduction and oxygen evolution reactions. Herein, highly conductive Sm3+ and Nd3+ double-doped ceria (Sm0.075Nd0.075Ce0.85O2-δ, SNDC) is utilized as an active component for reversible SOC applications. We develop a novel La0.6Sr0.4Co0.2Fe0.8O3 -δ (LSCF)-SNDC composite oxygen electrode. Compared with the conventional LSCF-Gd-doped ceria oxygen electrode, the LSCF-SNDC exhibits ∼35% lower cathode polarization resistance (0.042 Ω cm2 at 750 °C) owing to rapid oxygen incorporation and surface diffusion kinetics. Furthermore, the SOC with the LSCF-SNDC oxygen electrode and the SNDC buffer layer yields a remarkable performance in both the fuel cell (1.54 W cm-2 at 750 °C) and electrolysis cell (1.37 A cm-2 at 750 °C) modes because the incorporation of SNDC promotes the surface diffusion kinetics at the oxygen electrode bulk and the activity of the triple phase boundary at the interface. These findings suggest that the highly conductive SNDC material effectively enhances both oxygen reduction and oxygen evolution reactions, thus serving as a promising material in reversible SOC applications at reduced temperatures.

3.
ACS Appl Mater Interfaces ; 12(5): 5730-5738, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31918549

ABSTRACT

Cr poisoning of cathode materials is one of the main degradation issues hampering the operation of solid oxide fuel cells (SOFCs). To overcome this shortcoming, LaNi0.6Fe0.4O3-δ (LNF) has been developed as an alternative cathode material owing to its superior chemical stability in Cr environments. In this study, we develop a hybrid electrochemical deposition technique to fabricate a nanostructured LNF-gadolinium-doped ceria (GDC) (n-LNF-GDC) cathode with enhanced active reaction sites for the oxygen reduction reaction. For this purpose, Fe and Ni cations are co-deposited onto an electrically conductive carbon nanotube-modified GDC backbone by electroplating, whereas La cations are successively deposited through a chemically assisted electrodeposition method. The proposed method involves a low-temperature (900 °C) calcination step of electrodeposited cations, which avoids the need of fabricating a GDC diffusion barrier layer which is otherwise needed to avoid the formation of insulating phases (e.g., La2Zr2O7) when fabricating by conventional high-temperature (≥1000 °C) sintering. Scanning electron microscopy images reveal a unique nanofibrous structure of n-LNF-GDC, which is believed to play an instrumental role in enhancing the electrochemical characteristics by increasing the active triple-phase boundaries. An anode-supported SOFC with the n-LNF-GDC cathode showed the superior performance of 0.984 W cm-2 at an intermediate temperature of 750 °C as compared to the power densities of 0.495 and 0.874 W cm-2 produced by LNF-GDC and state-of-the-art La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)-GDC composite cathodes fabricated by conventional sintering. A short-term accelerated Cr-poisoning durability test indicated good electrochemical stability of n-LNF-GDC, whereas LSCF exhibited severe degradation. The electrochemically engineered nanostructured n-LNF-GDC can serve as an effective cathode for SOFCs to achieve high performance and long-term durability.

4.
Anal Chem ; 87(5): 2907-15, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25647357

ABSTRACT

The accuracy and precision of isotopic analysis in Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) relies on the appropriate reduction of the dead-time and detector saturation effects, especially when analyzing species with high ion yields or present in high concentrations. Conventional approaches to avoid these problems are based on Poisson dead-time correction and/or an overall decrease of the total secondary ion intensity by reducing the target current. This ultimately leads to poor detection limits for the minor isotopes and high uncertainties of the measured isotopic ratios. An alternative strategy consists of the attenuation of those specific secondary ions that saturate the detector, providing an effective extension of the linear dynamic range. In this work, the selective attenuation of secondary ion signals (SASI) approach is applied to the study of oxygen transport properties in electroceramic materials by isotopic labeling with stable (18)O tracer and ToF-SIMS depth profiling. The better analytical performance in terms of accuracy and precision allowed a more reliable determination of the oxygen surface exchange and diffusion coefficients while maintaining good mass resolution and limits of detection for other minor secondary ion species. This improvement is especially relevant to understand the ionic transport mechanisms and properties of solid materials, such as the parallel diffusion pathways (e.g., oxygen diffusion through bulk, grain boundary, or dislocations) in electroceramic materials with relevant applications in energy storage and conversion devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...