Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7485, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980343

ABSTRACT

Direct methane protonic ceramic fuel cells are promising electrochemical devices that address the technical and economic challenges of conventional ceramic fuel cells. However, Ni, a catalyst of protonic ceramic fuel cells exhibits sluggish reaction kinetics for CH4 conversion and a low tolerance against carbon-coking, limiting its wider applications. Herein, we introduce a self-assembled Ni-Rh bimetallic catalyst that exhibits a significantly high CH4 conversion and carbon-coking tolerance. It enables direct methane protonic ceramic fuel cells to operate with a high maximum power density of ~0.50 W·cm-2 at 500 °C, surpassing all other previously reported values from direct methane protonic ceramic fuel cells and even solid oxide fuel cells. Moreover, it allows stable operation with a degradation rate of 0.02%·h-1 at 500 °C over 500 h, which is ~20-fold lower than that of conventional protonic ceramic fuel cells (0.4%·h-1). High-resolution in-situ surface characterization techniques reveal that high-water interaction on the Ni-Rh surface facilitates the carbon cleaning process, enabling sustainable long-term operation.

2.
iScience ; 25(9): 105009, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36105594

ABSTRACT

Ammonia is a promising carbon-free hydrogen carrier. Owing to their nickel-rich anodes and high operating temperatures, solid oxide fuel cells (SOFCs) can directly utilize NH3 fuel-direct-ammonia SOFCs (DA-SOFCs). Lowering the operating temperature can diversify application areas of DA-SOFCs. We tested direct-ammonia operation using two types of thin-film SOFCs (TF-SOFCs) under 500 to 650°C and compared these with a conventional SOFC. The TF-SOFC with a nickel oxide gadolinium-doped ceria anode achieved a peak power density of 1330 mW cm-2 (NH3 fuel under 650°C), which is the best performance reported to date. However, the performance difference between the NH3 and H2 operations was significant. Electrochemical impedance analyses, ammonia conversion quantification, and two-dimensional multi-physics modeling suggested that reduced ammonia conversion at low temperatures is the main cause of the performance gap. A comparative study with previously reported DA-SOFCs clarified that incorporating a more active ammonia decomposition catalyst will further improve low-temperature DA-SOFCs.

3.
Materials (Basel) ; 14(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34771986

ABSTRACT

The purpose of this work was to examine the effect of tensile stress on the oxide properties of a nickel-based Alloy 600 that was exposed to simulated nuclear steam generator water at 340 °C for 1000 h. The size of the outer oxide particles increased, and the chromium content of the inner oxides decreased under tensile stress. Electrochemical measurements revealed that the charge carrier density increased, and the charge transfer resistance and film resistance were reduced under the tensile stress condition. These changes in the oxide properties are attributed to the formation of short diffusion paths such as line and surface defects due to tensile deformation.

4.
ACS Appl Mater Interfaces ; 9(45): 39407-39415, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29072074

ABSTRACT

For the commercial development of solid oxide fuel cells (SOFCs), cathode current collection has been one of the most challenging issues because it is extremely difficult to form continuous electric paths between two rigid components in a high-temperature oxidizing atmosphere. Herein, we present a Co-Ni foam as an innovative cathode current collector that fulfills all strict thermochemical and thermomechanical requirements for use in SOFCs. The Co-Ni foam is originally in the form of a metal alloy, offering excellent mechanical properties and manufacturing tolerance during stack assembly and startup processes. Then, it is converted to the conductive spinel oxide in situ during operation and provides nearly ideal structural and chemical characteristics as a current collector, gas distributor, and load-bearing component. The functionality and durability of the Co-Ni foam are verified by unit cell test and 1 kW-class stack operation, demonstrating performance that is equivalent to that of precious metals as well as an exceptional stability under dynamic conditions with severe temperature and current variations. This work highlights a cost-effective technique to achieve highly reliable electric contacts over the large area using the in situ metal-to-ceramic phase transformation that could be applied to various high-temperature electrochemical devices.

5.
Nat Commun ; 8: 14553, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230080

ABSTRACT

In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

6.
Sci Rep ; 7: 41207, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120896

ABSTRACT

High-temperature chemical reactions are ubiquitous in (electro) chemical applications designed to meet the growing demands of environmental and energy protection. However, the fundamental understanding and optimization of such reactions are great challenges because they are hampered by the spontaneous, dynamic, and high-temperature conditions. Here, we investigated the roles of metal catalysts (Pd, Ni, Cu, and Ag) in the high-temperature reverse water-gas shift (RWGS) reaction using in-situ surface analyses and density functional theory (DFT) calculations. Catalysts were prepared by the deposition-precipitation method with urea hydrolysis and freeze-drying. Most metals show a maximum catalytic activity during the RWGS reaction (reaching the thermodynamic conversion limit) with formate groups as an intermediate adsorbed species, while Ag metal has limited activity with the carbonate species on its surface. According to DFT calculations, such carbonate groups result from the suppressed dissociation and adsorption of hydrogen on the Ag surface, which is in good agreement with the experimental RWGS results.

7.
Materials (Basel) ; 9(8)2016 Aug 09.
Article in English | MEDLINE | ID: mdl-28773795

ABSTRACT

Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs.

8.
Nanotechnology ; 25(44): 445403, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25319506

ABSTRACT

Thermopower waves, which occur during combustion within hybrid structures formed from nanomaterials and chemical fuels, result in a self-propagating thermal reaction and concomitantly generate electrical energy from the acceleration of charge carriers along the nanostructures. The hybrid structures for thermopower waves are composed of two primary components: the core thermoelectric material and the combustible fuel. So far, most studies have focused on investigating various nanomaterials for improving energy generation. Herein, we report that the composition of the chemical fuel used has a significant effect on the power generated by thermopower waves. Hybrid nanostructures consisting of mixtures of picric acid and picramide with sodium azide were synthesized and used to generate thermopower waves. A maximum voltage of ∼2 V and an average peak specific power as high as 15 kW kg(-1) were obtained using the picric acid/sodium azide/multiwalled carbon nanotubes (MWCNTs) array composite. The average reaction velocity and the output voltage in the case of the picric acid/sodium azide were 25 cm s(-1) and 157 mV, while they were 2 cm s(-1) and 3 mV, in the case of the picramide/sodium azide. These marked differences are attributable to the chemical and structural differences of the mixtures. Mixing picric acid and sodium azide in deionized water resulted in the formation of 2,4,6-trinitro sodium phenoxide and hydrogen azide (H-N3), owing to the exchange of H(+) and Na(+) ions, as well as the formation of fiber-like structures, because of benzene π stacking. The negative enthalpy of formation of the new compounds and the fiber-like structures accelerate the reaction and increase the output voltage. Elucidating the effects of the composition of the chemical fuel used in the hybrid nanostructures will allow for the control of the combustion process and help optimize the energy generated from thermopower waves, furthering the development of thermopower waves as an energy source.

9.
Phys Chem Chem Phys ; 16(29): 15249-55, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24938312

ABSTRACT

The Ni-yttria-stabilized zirconia (YSZ) anode functional layer in solid oxide fuel cells produced by pulsed laser-deposition was studied using three-dimensional tomography. Anode feature sizes of ~130 nm were quite small relative to typical anodes, but errors arising in imaging and segmentation were shown using a sensitivity analysis to be acceptable. Electrochemical characterization showed that these cells achieved a relatively high maximum power density of 1.4 W cm(-2) with low cell resistance at an operating temperature of 600 °C. The tomographic data showed anode three-phase boundary density of ~56 µm(-2), more than 10 times the value observed in conventional Ni-YSZ anodes. Anode polarization resistance values, predicted by combining the structural data and literature values of three-phase boundary resistance in an electrochemical model, were consistent with measured electrochemical impedance spectra, explaining the excellent intermediate-temperature performance of these cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...