Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(6): 3554-61, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25632798

ABSTRACT

A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

2.
Nanomaterials (Basel) ; 5(3): 1493-1531, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-28347078

ABSTRACT

Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.

3.
Nanoscale ; 6(13): 7503-11, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24883431

ABSTRACT

The evolution of copper-based interconnects requires the realization of an ultrathin diffusion barrier layer between the Cu interconnect and insulating layers. The present work reports the use of atomically thin layer graphene as a diffusion barrier to Cu metallization. The diffusion barrier performance is investigated by varying the grain size and thickness of the graphene layer; single-layer graphene of average grain size 2 ± 1 µm (denoted small-grain SLG), single-layer graphene of average grain size 10 ± 2 µm (denoted large-grain SLG), and multi-layer graphene (MLG) of thickness 5-10 nm. The thermal stability of these barriers is investigated after annealing Cu/small-grain SLG/Si, Cu/large-grain SLG/Si, and Cu/MLG/Si stacks at different temperatures ranging from 500 to 900 °C. X-ray diffraction, transmission electron microscopy, and time-of-flight secondary ion mass spectroscopy analyses confirm that the small-grain SLG barrier is stable after annealing up to 700 °C and that the large-grain SLG and MLG barriers are stable after annealing at 900 °C for 30 min under a mixed Ar and H2 gas atmosphere. The time-dependent dielectric breakdown (TDDB) test is used to evaluate graphene as a Cu diffusion barrier under real device operating conditions, revealing that both large-grain SLG and MLG have excellent barrier performance, while small-grain SLG fails quickly. Notably, the large-grain SLG acts as a better diffusion barrier than the thicker MLG in the TDDB test, indicating that the grain boundary density of a graphene diffusion barrier is more important than its thickness. The near-zero-thickness SLG serves as a promising Cu diffusion barrier for advanced metallization.

4.
ACS Appl Mater Interfaces ; 6(4): 2764-9, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24483324

ABSTRACT

Without introducing defects in the monolayer of carbon lattice, the deposition of high-κ dielectric material is a significant challenge because of the difficulty of high-quality oxide nucleation on graphene. Previous investigations of the deposition of high-κ dielectrics on graphene have often reported significant degradation of the electrical properties of graphene. In this study, we report a new way to integrate high-κ dielectrics with graphene by transferring a high-κ dielectric nanosheet onto graphene. Al2O3 film was deposited on a sacrificial layer using an atomic layer deposition process and the Al2O3 nanosheet was fabricated by removing the sacrificial layer. Top-gated graphene field-effect transistors were fabricated and characterized using the Al2O3 nanosheet as a gate dielectric. The top-gated graphene was demonstrated to have a field-effect mobility up to 2200 cm(2)/(V s). This method provides a new method for high-performance graphene devices with broad potential impacts reaching from high-frequency high-speed circuits to flexible electronics.

5.
Adv Mater ; 25(30): 4139-44, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23733597

ABSTRACT

A gas-driven ultrafast adhesion switching of water droplets on palladium-coated Si nanowire arrays is demonstrated. By regulating the gas-ambient between the atmosphere and H2 , the super-hydrophobic adhesion is repeatedly switched between water-repellent and water-adhesive. The capability of modulating the super-hydrophobic adhesion on a super-hydrophobic surface with a non-contact mode could be applicable to novel functional lab-on-a-chip platforms.


Subject(s)
Crystallization/methods , Hydrogen/chemistry , Microfluidics/methods , Nanostructures/chemistry , Palladium/chemistry , Silicon/chemistry , Water/chemistry , Adhesiveness , Adsorption , Equipment Design , Equipment Failure Analysis , Gases/chemistry , Hydrophobic and Hydrophilic Interactions , Materials Testing , Nanostructures/ultrastructure , Particle Size , Surface Properties
6.
Biosens Bioelectron ; 45: 129-35, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23455052

ABSTRACT

Here, protein micropatterns were prepared on micropatterned nanostructures for potential applications in microarray-based multiplex bioassays with enhanced protein-loading capacity and detection sensitivity. Vertically-aligned silicon nanowires (SiNWs) that were about 8 µm in height and 150 nm in diameter were prepared using an etching process and were surface-modified with aminopropyltriethoxysilane (APTES) to allow them to covalently immobilize proteins. The SiNW substrate was then overlaid with a micropattern of poly(ethylene glycol) (PEG) hydrogel to create defined arrays of microwells consisting of APTES-modified SiNW on the bottom of the wells, with hydrogel on the walls of the wells. Due to the non-adhesiveness of PEG hydrogels toward proteins, proteins were selectively immobilized on the surface-modified SiNW regions to create protein micropatterns. The increase in surface area increased the protein loading capacity of the SiNWs by more than 10 times the capacity of a planar silicon substrate. Immunobinding assays between IgG and anti-IgG and between IgM and anti-IgM that were performed on micropatterned SiNWs emitted stronger fluorescent signals and showed higher sensitivity than assays performed on planar silicon substrates. Finally, microfluidic channels were successfully integrated into the micropatterned SiNWs to enable the simultaneous performance of multiple immunoassays on a single microarray platform.


Subject(s)
Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , Nanowires/chemistry , Silicon/chemistry , Antibodies, Anti-Idiotypic/chemistry , Antibodies, Anti-Idiotypic/immunology , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Immunoassay/methods , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin M/chemistry , Immunoglobulin M/immunology , Polyethylene Glycols/chemistry , Protein Array Analysis/methods , Substrate Specificity
7.
ACS Appl Mater Interfaces ; 5(7): 2432-7, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23465382

ABSTRACT

We report the fabrication of graphene-encapsulated nanoballs with copper nanoparticle (Cu NP) cores whose size range from 40 nm to 1 µm using a solid carbon source of poly(methyl methacrylate) (PMMA). The Cu NPs were prone to agglomerate during the annealing process at high temperatures of 800 to 900 °C when gas carbon source such as methane was used for the growth of graphene. On the contrary, the morphologies of the Cu NPs were unchanged during the growth of graphene at the same temperature range when PMMA coating was used. The solid source of PMMA was first converted to amorphous carbon layers through a pyrolysis process at the temperature regime of 400 °C, which prevented the Cu NPs from agglomeration, and they were converted to few-layered graphene (FLG) at the elevated temperatures. Raman and transmission electron microscope analyses confirmed the synthesis of FLG with thickness of approximately 3 nm directly on the surface of the Cu NPs. X-ray diffraction and X-ray photoelectron spectroscopy analyses, along with electrical resistance measurement according to temperature changes showed that the FLG-encapsulated Cu NPs were highly resistant to oxidation even after exposure to severe oxidation conditions.

8.
ACS Appl Mater Interfaces ; 4(10): 5162-8, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-22971021

ABSTRACT

The self-assembly behaviors of flow-enhanced CdSe nanoparticle (NP) colloidal systems were investigated, which were systemically prepared by adding ethylene glycol (EG) or acetic acid (AA) to NP suspensions with deionized water (DI water) base. The additive solvents, which had higher boiling points and lower surface tensions than those of the DI water, modified the internal flow of the NP colloidal system, consequently affecting the morphologies of the generated NP superstructures after the full evaporation of their droplets. In flow-enhanced systems, NPs were formed into highly elongated dendrites that stretched from the center region to the edges along the direction of convective flow inside the droplet, while NPs in random drift system were easily aggregated to form cluster-shaped thick dendritic structures. When the volume fraction of EG was increased, the dominant superstructures were changed from dendrites to clusters, which can be mainly attributed to the changes in the dielectric properties of the NP droplets as evaporation proceeded because of the large discrepancy in the vapor pressures of EG and DI water. The balance between the interparticle potentials of electrostatic repulsion and van der Waals attraction was continuously altered, resulting in the formation of clusters with increasing EG ratio. Contrastively, the transition of superstructures could not be observed in the case of colloidal system prepared by mixing DI water and AA, which can be ascribed to the similar vapor pressures of the two solvents; the dielectric properties of the solution mixture was barely changed throughout the steady evaporation process, which resulted in the formation of uniformly distributed highly elongated dendrites. Polarization-dependent imaging experiments and photoluminescence measurements revealed that the stretched dendrites formed under the flow-enhanced conditions showed higher crystallinity than that of the clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...