Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003491

ABSTRACT

The increasing frequency of processed food consumption has led to the higher ingestion of sugar, increasing the risk of chronic diseases, such as obesity. Yeast hydrolysates (YHs) inhibit body fat accumulation. However, the action mechanism of YH in relation to high-sugar diet-induced obesity is still unclear. Therefore, this study aimed to evaluate the biological effects of YH on lipid accumulation and verify behavioral changes and carbohydrate metabolic gene regulation in high-sugar diet-fed fruit flies. Adult male flies (Drosophila melanogaster; 2-5 days old) were exposed to 20% sucrose for obesity induction. In high-sugar-fed Drosophila, the effect of YH was compared with that of yeast extract. The effects of YH on body conditions and lipid droplet size were quantified and analyzed. Behavioral factors were evaluated by analyzing circadian rhythm patterns and neurotransmitter content, and a molecular approach was used to analyze the expression of metabolism-related genes. Dietary supplementation with YH did not reduce total sugar content, but significantly decreased the triglyceride (TG) levels in Drosophila. A behavioral analysis showed that the total number of night-time activities increased significantly with YH treatment in a dose-dependent manner. In addition, YH effectively regulated the gene expression of insulin-like peptides related to carbohydrate metabolism as well as genes related to lipogenesis. The TG content was significantly reduced at a YH concentration of 0.5%, confirming that the active compound in YH effectively suppresses fat accumulation. These findings support that YH is a potential anti-obesity food material via regulating carbohydrate metabolism in Drosophila.


Subject(s)
Drosophila melanogaster , Drosophila , Male , Animals , Drosophila/genetics , Drosophila melanogaster/metabolism , Obesity/genetics , Obesity/metabolism , Yeasts , Sucrose/metabolism , Diet , Lipids
2.
Antioxidants (Basel) ; 12(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37891964

ABSTRACT

Excessive alcohol consumption increases oxidative stress, leading to alcoholic liver disease. In this study, the protective effects of a mixture of cysteine and glutathione against ethanol-induced hangover and liver damage were evaluated in mice and HepG2 cells. Ethanol (2 mL/kg) was orally administered to the mice 30 min before receiving the test compounds (200 mg/kg), and the behavioral and oxidative stress-related biochemical parameters altered by ethanol were analyzed. Acute ethanol administration increased anxiety behavior and decreased balance coordination in mice (p < 0.001); however, a mixture of cysteine and glutathione (MIX) in a 3:1 ratio improved alcohol-induced behavior more effectively than the individual compounds (p < 0.001). The MIX group showed higher ethanol-metabolizing enzyme activity than the control group (p < 0.001) and significantly suppressed the elevation of serum alcohol (p < 0.01) and acetaldehyde (p < 0.001) levels after 1 h of ethanol administration. In HepG2 cells, 2.5 mM MIX accelerated ethanol metabolism and reduced cytochrome P450 2E1 mRNA expression (p < 0.001). MIX also increased the expression of antioxidant enzymes through the upregulation of nuclear erythroid 2-related factor 2 (Nrf2) signaling and consequently suppressed the overproduction of reactive oxygen species and malondialdehyde (p < 0.001). Collectively, MIX alleviates the hangover symptoms and attenuates the alcohol-induced oxidative stress by regulating the Nrf2 pathway.

3.
Antioxidants (Basel) ; 12(10)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37891970

ABSTRACT

Dendropanax morbiferus is highly valued in traditional medicine and has been used to alleviate the symptoms of numerous diseases owing to its excellent antioxidant activity. This study aimed to evaluate the sleep promotion and related signaling pathways of D. morbiferus extract (DE) via behavioral analysis, molecular biological techniques, and electrophysiological measurements in invertebrate and vertebrate models. In Drosophila, the group treated with 4% DE experienced decreased subjective nighttime movement and sleep bout and increased total sleeping time. Moreover, substantial changes in locomotor activity, including distance moved, velocity, and movement, were confirmed in the 4% DE-treated group. Compared to Drosophila in which insomnia and oxidative stress were induced by exposure to 0.1% caffeine, the DE-treated group improved sleep-related parameters to the level of the normal group. In the Drosophila model, exposure to 4% DE upregulated the expression of gamma-aminobutyric acid (GABA)-related receptors and serotonin receptor (5-HT1A), along with the expression of antioxidant-related factors, glutathione, and catalase. In the pentobarbital-induced sleep test using ICR mice, the duration of sleep was markedly increased by high concentration of DE. In addition, through the electroencephalography analysis of SD-rats, a significant increase in non-rapid-eye-movement sleep and delta waves was confirmed with high concentrations of DE administration. The increase in sleep time and improvement in sleep quality were confirmed to be related to the expression of altered GABA receptors and the enhancement of the contents of the neurotransmitters GABA and serotonin (5-HT) because of high DE administration. High-dose administration of DE also increased the expression of antioxidant-related factors in the brain and significantly decreased malondialdehyde content. Taken together, DE induced improvements in sleep quantity and quality by regulating neurotransmitter content and related receptor expression, along with high antioxidant activity, and may have a therapeutic effect on sleep disorders.

4.
Foods ; 12(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569133

ABSTRACT

Although Ziziphus jujuba Mill (jujube) is used in folk medicine for hypnotic sedative, anxiolytic, and many other purposes, to date, only a few studies have revealed its sleep-promoting effects and related mechanisms. Currently, drugs used for the treatment of sleep disorders have various side effects, so it is essential to develop safe natural materials. Therefore, we evaluated the sleep-enhancing activity and mechanism of action of an aqueous extract of jujube seeds (ZW) fermented with Lactobacillus brevis L-32 in rodent models. The starch contained in ZW was removed by enzymatic degradation and fermented with L. brevis to obtain a fermented product (ZW-FM) with a high γ-aminobutyric acid (GABA) content. To evaluate the sleep-promoting effect of ZW-FM, pentobarbital-induced sleep tests were performed on ICR mice, and electroencephalography analysis was undertaken in Sprague Dawley rats. Additionally, the awakening relief effects of ZW-FM were confirmed in a caffeine-induced insomnia model. Finally, the mechanism of sleep enhancement by ZW-FM was analyzed using GABA receptor type A (GABAA) antagonists. The ZW-FM-treated groups (100 and 150 mg/kg) showed increased sleep time, especially the δ-wave time during non-rapid eye movement (NREM) sleep. In addition, the 150 mg/kg ZW-FM treatment group showed decreased sleep latency and increased sleep time in the insomnia model. In particular, NREM sleep time was increased and REM sleep time, which was increased by caffeine treatment, was decreased by ZW-FM treatment. ZW-FM-induced sleep increase was inhibited by the GABAA receptor antagonists picrotoxin, bicuculline, and flumazenil, confirming that the increase was the result of a GABAergic mechanism. These results strongly suggest that the increased GABA in water extract from jujube seeds fermented by L. brevis acts as a sleep-promoting compound and that the sleep-promoting activity is related to GABAA receptor binding.

5.
J Food Drug Anal ; 31(2): 278-288, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37335157

ABSTRACT

Ashwagandha (Withania somnifera L. Dunal), an Indian medicinal plant that has been used for centuries to treat insomnia, exhibits a variety of biological activities, such as improving cognitive function, immunity and anxiety. In this study, the effect of enzyme-treated Ashwagandha root extract (EA) and on sleep was evaluated using rodent models. Starch contained in the Ashwagandha root extract was removed by amylase treatment to prepare EA. To evaluate the sleep-promoting activity of EA, a pentobarbital-induced sleep test and electroencephalogram analysis were performed. In addition, the sleep-promoting mechanism of EA was elucidated by analyzing the expression of sleep-related receptors. In the pentobarbital-induced sleep test, EA dose-dependently increased sleep duration. Additionally, electroencephalogram analysis revealed that EA significantly increased δ-wave and non-rapid eye movement sleep times, which are involved in deep sleep, thereby improving sleep quality and quantity. EA also effectively relieved caffeine-induced insomnia symptoms. Furthermore, the γ-aminobutyric acid (GABA) content in the brain and mRNA and protein expression of GABAA, GABAB1, and serotonin receptors were significantly increased by EA compared to the normal group. In particular, EA showed sleep-promoting activity by binding to various GABAA receptor sites. Collectively, EA exhibited sleep-promoting activity through the GABAergic system and may be used as a functional material to improve sleep deprivation.


Subject(s)
Sleep Initiation and Maintenance Disorders , Withania , Receptors, GABA , Withania/chemistry , Pentobarbital/pharmacology , Amylases/pharmacology , Plant Extracts/pharmacology , Plant Extracts/analysis , Sleep , gamma-Aminobutyric Acid
6.
Molecules ; 28(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37050017

ABSTRACT

Chitin is mostly produced from crustaceans, but it is difficult to supply raw materials due to marine pollution, and the commonly used chemical chitin extraction method is not environmentally friendly. Therefore, this study aims to establish a chitin extraction process using enzymes and to develop edible insect-derived chitin as an eco-friendly new material. The response surface methodology (RSM) was used to determine the optimal conditions for enzymatic hydrolysis. The optimal conditions for enzymatic hydrolysis by RSM were determined to be the substrate concentration (7.5%), enzyme concentration (80 µL/g), and reaction time (24 h). The solubility and DDA of the mealworm chitosan were 45% and 37%, respectively, and those of the commercial chitosan were 61% and 57%, respectively. In regard to the thermodynamic properties, the exothermic peak of mealworm chitin was similar to that of commercial chitin. In the FT-IR spectrum, a band was observed in mealworm chitin corresponding to the C=O of the NHCOCH3 group at 1645 cm-1, but this band showed low-intensity C=O in the mealworm chitosan due to deacetylation. Collectively, mealworm chitosan shows almost similar physical and chemical properties to commercial chitosan. Therefore, it is shown that an eco-friendly process can be introduced into chitosan production by using enzyme-extracted mealworms for chitin/chitosan production.


Subject(s)
Chitin , Chitosan , Subtilisins , Tenebrio , Animals , Acetylation , Calorimetry, Differential Scanning , Chitin/chemistry , Chitin/isolation & purification , Chitin/metabolism , Chitosan/chemistry , Chitosan/isolation & purification , Chitosan/metabolism , Crustacea/chemistry , Edible Insects/chemistry , Edible Insects/metabolism , Hydrolysis , Proteolysis , Solubility , Spectroscopy, Fourier Transform Infrared , Subtilisins/metabolism , Tenebrio/chemistry , Tenebrio/metabolism , Thermodynamics
7.
Phytother Res ; 37(7): 3069-3082, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36877124

ABSTRACT

This study was conducted to investigate the effect of Gynostemma pentaphyllum extract containing gypenoside L (GPE) on improving the cognitive aspects of fatigue and performance of the motor system. One hundred healthy Korean adults aged 19-60 years were randomized to the treatment (GPE for 12 weeks) and control groups, and efficacy and safety-related parameters were compared between the two groups. Maximal oxygen consumption (VO2 max) and O2 pulse were significantly higher in the treatment group than in the control group (p = 0.007 and p = 0.047, respectively). After 12 weeks, the treatment group showed significant changes such as decreases in the levels of free fatty acids (p = 0.042). In addition, there were significant differences in the rating of perceived exertion (RPE) (p < 0.05) and value of temporal fatigue between the treatment and control groups on the multidimensional fatigue scale (p < 0.05). Moreover, the level of endothelial nitric oxide synthase (eNOS) in the blood was significantly higher in the treatment group than in the control group (p = 0.047). In summary, oral administration of GPE has a positive effect on resistance to exercise-induced physical and mental fatigue.


Subject(s)
Gynostemma , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
8.
Antioxidants (Basel) ; 12(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36979022

ABSTRACT

This study aimed to evaluate the hangover relieving effect of ginseng berry kombucha (GBK) fermented with Saccharomyces cerevisiae and Gluconobacter oxydans in in vitro and in vivo models. The antioxidant activity and oxidative stress inhibitory effect of GBK were evaluated in ethanol-treated human liver HepG2 cells. In addition, biochemical and behavioral analyses of ethanol treated male ICR mice were performed to confirm the anti-hangover effect of GBK. The radical scavenging activity of GBK was increased by fermentation, and the total ginsenoside content of GBK was 70.24 µg/mL. In HepG2 cells, in which oxidative stress was induced using ethanol, GBK significantly increased the expression of antioxidant enzymes by upregulating the Nrf2/Keap1 pathway. Moreover, GBK (15 and 30 mg/kg) significantly reduced blood ethanol and acetaldehyde concentrations in ethanol-treated mice. GBK significantly increased the levels of alcohol-metabolizing enzymes, including alcohol dehydrogenase and acetaldehyde dehydrogenase. The balance beam test and elevated plus maze test revealed that high-dose GBK significantly ameliorated ethanol-induced behavioral changes. Collectively, GBK exerted a protective effect against ethanol-induced liver damage by regulating the Nrf2/Keap1 pathway.

9.
Foods ; 13(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38201029

ABSTRACT

We aimed to analyze the increase in the sleep-promoting effects based on the mixed ratio of botanical extracts, Ziziphus jujuba seeds, Dimocarpus longan fruits, and Lactuca sativa leaves, using animal models. Behavioral analyses, including an analysis of the total sleep time of Drosophila melanogaster, were conducted to select the optimal mixed ratio of the three botanical extracts. The effects were verified in a caffeine-induced sleepless model, specific neurotransmitter receptor antagonists, and ICR mice. In D. melanogaster exposed to 2.0% of each extract, group behavior was significantly reduced, and the mixed extracts of Z. jujuba, D. longan, and L. sativa (4:1:1 and 1:4:1) significantly increased the total sleep time with individual fruit flies. In the caffeine-induced insomnia model, mixed extracts (4:1:1 and 1:4:1) led to the highest increase in total sleep time. An analysis of locomotor ability revealed a significant reduction in the mobility percentage in the mixed extract groups (0:0:1, 1:0:1, 1:1:1, 4:1:1, and 1:4:1). The administration of Z. jujuba extract and mixed extracts (4:1:1) significantly increased the expression of GABAA-R, whereas the administration of the mixed extracts (4:1:1) and (1:4:1) significantly increased the expression of GABAB-R1 and GABAB-R2, respectively. D. longan extract and the mixed ratio (1:4:1) reduced the subjective nighttime movement and increased the total sleep time in the presence of flumazenil. An analysis of ICR mice indicated that the administration of mixed extracts (4:1:1) significantly increased sleep duration in a dose-dependent manner. These results indicated that the mixed ratio of Z. jujuba, D. longan, and L. sativa extracts, particularly the mixed ratio of 4:1:1, may have sleep-enhancing effects in fruit flies and mice. The study also identified changes in gene expression related to GABA receptors, indicating the potential mechanism for the observed sleep-promoting effects.

10.
Food Funct ; 13(11): 6271-6281, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35604005

ABSTRACT

In this study, we evaluated the effect of oral administration of galacto-oligosaccharide (GOS), famous biological molecules that are comprised of galactose and lactose, on ovalbumin (OVA)-induced allergic dermatitis. OVA-induced mice were divided into the OVA-administered group (OVA-C), promethazine hydrochloride-administered group (PC), and 100 and 200 mg kg-1 GOS-administered groups (GL and GH, respectively). GOS administration significantly improved epidermal thickness and decreased CD4+ cell numbers. The concentrations of IgE, OVA-specific IgE, and inflammatory cytokines (IL-4, IL-5, and INF-γ) in GH group mice were significantly lower than those in OVA-C group mice. Firmicutes and Bacteroidetes were identified as the major phyla in the intestinal microbiota in mice, and the relative abundance of Deferribacteres was significantly lower in the GH group than in the OVA-C group. Deferribacteraceae and Mucispirillum species were significantly lower in the GH group than in the OVA-C group. The relative abundance of Muribaculum species was significantly lower, but those of Lachnospira and Lactococcus species were significantly higher in the GH group than in the OVA-C group. Our results suggest that the alleviation effect of GOS on allergic dermatitis induced by OVA sensitization was achieved by regulating hypersensitive immune responses by improving the intestinal microbial ecosystem.


Subject(s)
Dermatitis, Atopic , Gastrointestinal Microbiome , Animals , Cytokines , Disease Models, Animal , Ecosystem , Immunity , Immunoglobulin E , Mice , Mice, Inbred BALB C , Oligosaccharides/pharmacology , Ovalbumin , Th2 Cells
11.
Molecules ; 27(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35458740

ABSTRACT

Reactive oxygen species (ROS) generated by ultraviolet (UV) exposure cause skin barrier dysfunction, which leads to dry skin. In this study, the skin moisturizing effect of sphingomyelin-containing milk phospholipids in UV-induced hairless mice was evaluated. Hairless mice were irradiated with UVB for eight weeks, and milk phospholipids (50, 100, and 150 mg/kg) were administered daily. Milk phospholipids suppressed UV-induced increase in erythema and skin thickness, decreased transepidermal water loss, and increased skin moisture. Milk phospholipids increased the expression of filaggrin, involucrin, and aquaporin3 (AQP3), which are skin moisture-related factors. Additionally, hyaluronic acid (HA) content in the skin tissue was maintained by regulating the expression of HA synthesis- and degradation-related enzymes. Milk phospholipids alleviated UV-induced decrease in the expression of the antioxidant enzymes superoxidase dismutase1 and 2, catalase, and glutathione peroxidase1. Moreover, ROS levels were reduced by regulating heme oxygenase-1 (HO-1), an ROS regulator, through milk phospholipid-mediated activation of nuclear factor erythroid-2-related factor 2 (Nrf2). Collectively, sphingomyelin-containing milk phospholipids contributed to moisturizing the skin by maintaining HA content and reducing ROS levels in UVB-irradiated hairless mice, thereby, minimizing damage to the skin barrier caused by photoaging.


Subject(s)
Skin Aging , Sphingomyelins , Animals , Hyaluronic Acid/metabolism , Mice , Mice, Hairless , Milk , Phospholipids/metabolism , Reactive Oxygen Species/metabolism , Skin , Sphingomyelins/pharmacology , Ultraviolet Rays/adverse effects
12.
Photochem Photobiol ; 98(5): 1172-1181, 2022 09.
Article in English | MEDLINE | ID: mdl-35294989

ABSTRACT

Collagen-tripeptide (CTP) and galacto-oligosaccharide (GOS), which improve collagen homeostasis and barrier function in the skin, are widely used in the food industry to improve wrinkle-related parameters and skin health. In this study, the photoprotective effect of CTP/GOS mixtures (3:1, 1:1, and 1:3) in ultraviolet (UV) B-irradiated hairless mice was examined. Skin parameter analysis, histological approaches, molecular biology techniques and HPLC analysis were applied to investigate the photoaging protective effect, signaling pathways and changes in the microbiota. Oral administration of CTP/GOS mixtures ameliorated photoaged physical parameters and serum levels of pro-inflammatory cytokines compared to UV-irradiated control group. Administration of the 1:3 mixture showed significant changes in the extracellular matrix-related gene expression compared to other mixture groups. The cecal short-chain fatty acid (SCFA) content showed a significant increase in the CTP/GOS mixed group with a higher GOS content than the control group. In the 16S rRNA-based analysis of cecal microbiota, the relative abundance ratio of the Akkermansia genus belonging to the Verrucomicrobia phylum was higher in CTP and GOS mixture-administered groups than in the UV-irradiated control group. Taken together, CTP/GOS mixtures showed a synergistic effect on photoprotective activity through changes in the gene expression, cytokine levels and intestinal microbiota composition.


Subject(s)
Skin Aging , Animals , Mice , Collagen/metabolism , Cytokines/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Mice, Hairless , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , RNA, Ribosomal, 16S , Skin/metabolism , Ultraviolet Rays/adverse effects
13.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575986

ABSTRACT

Amino acids, as nutrients, are expected to improve sleep disorders. This study aimed to evaluate the generation- and age-dependent sleep-improving effects of γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) coadministration. The differentially expressed genes and generation-related behavior after the administration of a GABA/5-HTP mixture were measured in a Drosophila model, while age-related changes in gene expression and oxidative stress-related parameters were measured in a mouse model. The GABA/5-HTP-treated group showed significant behavioral changes compared to the other groups. Sequencing revealed that the GABA/5-HTP mixture influenced changes in nervous system-related genes, including those involved in the regulation of the expression of behavioral and synaptic genes. Additionally, total sleep time increased with age, and nighttime sleep time in the first- and third-generation flies was significantly different from that of the control groups. The GABA/5-HTP mixture induced significant changes in the expression of sleep-related receptors in both models. Furthermore, the GABA/5-HTP mixture reduced levels of ROS and ROS reaction products in an age-dependent manner. Therefore, the increase in behavioral changes caused by GABA/5-HTP mixture administration was effective in eliminating ROS activity across generations and ages.


Subject(s)
5-Hydroxytryptophan/pharmacology , Amino Acids/pharmacology , Locomotion/drug effects , Sleep Wake Disorders/drug therapy , gamma-Aminobutyric Acid/pharmacology , Aging/drug effects , Aging/genetics , Aging/pathology , Animals , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Locomotion/physiology , Mice , Nutrients/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sleep Wake Disorders/metabolism , Sleep Wake Disorders/pathology
14.
Pharm Biol ; 59(1): 998-1007, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34362287

ABSTRACT

CONTEXT: Depression is a severe mental illness caused by a deficiency of dopamine and serotonin. Cannabis sativa L. (Cannabaceae) has long been used to treat pain, nausea, and depression. OBJECTIVE: This study investigates the anti-depressant effects of C. sativa (hemp) seed ethanol extract (HE) in chlorpromazine (CPZ)-induced Drosophila melanogaster depression model. MATERIALS AND METHODS: The normal group was untreated, and the control group was treated with CPZ (0.1% of media) for 7 days. The experimental groups were treated with a single HE treatment (0.5, 1.0, and 1.5% of media) and a mixture of 0.1% CPZ and HE for 7 days. The locomotor activity, behavioural patterns, depression-related gene expression, and neurotransmitters level of flies were investigated. RESULTS: The behavioural patterns of individual flies were significantly reduced with 0.1% CPZ treatment. In contrast, combination treatment of 1.5% HE and 0.1% CPZ significantly increased subjective daytime activity (p < 0.001) and behavioural factors (p < 0.001). These results correlate with increased transcript levels of dopamine (p < 0.001) and serotonin (p < 0.05) receptors and concentration of dopamine (p < 0.05), levodopa (p < 0.001), 5-HTP (p < 0.05), and serotonin (p < 0.001) compared to those in the control group. DISCUSSION AND CONCLUSIONS: Collectively, HE administration alleviates depression-like symptoms by modulating the circadian rhythm-related behaviours, transcript levels of neurotransmitter receptors, and neurotransmitter levels in the CPZ-induced Drosophila model. However, additional research is needed to investigate the role of HE administration in behavioural patterns, reduction of the neurotransmitter, and signalling pathways of depression in a vertebrate model system.


Subject(s)
Cannabis/chemistry , Depression/drug therapy , Plant Extracts/pharmacology , Animals , Behavior, Animal/drug effects , Chlorpromazine/pharmacology , Depression/chemically induced , Drosophila Proteins/metabolism , Drosophila melanogaster , Models, Animal , Motor Activity/drug effects , Neurotransmitter Agents/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Dopamine/metabolism , Seeds
15.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202133

ABSTRACT

Loss of skeletal muscle mass and function with age represents an important source of frailty and functional decline in the elderly. Antioxidants from botanical extracts have been shown to enhance the development, mass, and strength of skeletal muscle by influencing age-related cellular and molecular processes. Tannase-treated green tea extract contains high levels of the antioxidants (-)-epicatechin (EC) and gallic acid that may have therapeutic benefits for age-related muscle decline. The aim of this study was to investigate the effect of tannase-treated green tea extract on various muscle-related parameters, without concomitant exercise, in a single-center, randomized, double-blind, placebo-controlled study. Administration of tannase-treated green tea extract (600 mg/day) for 12 weeks significantly increased isokinetic flexor muscle and handgrip strength in the treatment group compared with those in the placebo (control) group. In addition, the control group showed a significant decrease in arm muscle mass after 12 weeks, whereas no significant change was observed in the treatment group. Blood serum levels of follistatin, myostatin, high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-6, IL-8, insulin-like growth factor-1 (IGF-1), and cortisol were analyzed, and the decrease in myostatin resulting from the administration of tannase-treated green tea extract was found to be related to the change in muscle mass and strength. In summary, oral administration of tannase-treated green tea extract containing antioxidants without concomitant exercise can improve muscle mass and strength and may have therapeutic benefits in age-related muscle function decline.

16.
Molecules ; 26(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069439

ABSTRACT

Current pharmacological treatments for insomnia carry several and long-term side effects. Therefore, natural products without side effects are warranted. In this study, the sleep-promoting activity of the lotus leaf (Nelumbo nucifera) extract was assessed using ICR mice and Sprague Dawley rats. A pentobarbital-induced sleep test and electroencephalogram analysis were conducted to measure sleep latency time, duration, and sleep architecture. The action mechanism of the extract was evaluated through ligand binding experiments. A high dose (300 mg/kg) of the ethanolic lotus leaf extract significantly increased sleep duration compared to the normal group (p < 0.01). Administration of low (150 mg/kg) and high doses (300 mg/kg) of the extract significantly increased sleep quality, especially the relative power of theta waves (p < 0.05), compared to the normal group. Furthermore, caffeine and lotus leaf extract administration significantly recovered caffeine-induced sleep disruption (p < 0.001), and the sleep quality was similar to that of the normal group. Additionally, ligand binding assay using [3H]-flumazenil revealed that quercetin-3-O-glucuronide contained in the lotus leaf extract (77.27 µg/mg of extract) enhanced sleep by binding to GABAA receptors. Collectively, these results indicated that the lotus leaf extract, particularly quercetin-3-O-glucuronide, exhibits sleep quantity- and quality-enhancing activity via the GABAergic pathway.


Subject(s)
Lotus/chemistry , Plant Leaves/chemistry , Quercetin/analogs & derivatives , Sleep/drug effects , Animals , Dose-Response Relationship, Drug , Ethanol/chemistry , Male , Mice, Inbred ICR , Quercetin/administration & dosage , Quercetin/isolation & purification , Quercetin/pharmacology , Receptors, GABA-A/drug effects
17.
Food Sci Anim Resour ; 41(3): 527-541, 2021 May.
Article in English | MEDLINE | ID: mdl-34017959

ABSTRACT

The aim of this study was to investigate the effect of a mixture of multi-strain probiotics and prebiotics on loperamide-induced constipation in Sprague-Dawley rats. A multi-strain probiotics alone (loperamide-induced group with multi-strain probiotics mixture group; Lop-Pro) and a mixture of multi-strain probiotics and prebiotics (loperamide-induced group with multi-strain probiotics and prebiotics mixture group; Lop-Pro/Pre) were administered orally after inducing constipation. The fecal water content was significantly higher (by 42%) in the Lop-Pro/Pre group (33.5%) than in the loperamide-induced group (Lop) (23.7%) (p<0.05). The intestinal mucosal thickness, crypt cell area, and interstitial cells of Cajal area were significantly higher in the Lop-Pro/Pre group compared to the Lop group by 16.4%, 20.6%, and 42.3%, respectively. Additionally, the total short-chain fatty acid content was significantly increased in the Lop-Pro and Lop-Pro/Pre groups by 56.4% and 54.2%, respectively, compared with the Lop group. The Lop-Pro and Lop-Pro/Pre groups recovered loperamide-induced alteration in Bacteroidetes and Verrucomicrobia abundance among intestinal microbiota, whereas the Lop-Pro/Pre group recovered Akkermansia, Lactobacillus, Clostridium, Bacteroides, and Oscillibacter abundance. Moreover, the relative abundance of Oscillibacter and Clostridium was significantly different in the Lop-Pro/Pre group compared to the Lop group. Collectively, administration of synbiotics rather than multi-strain probiotics alone is effective in alleviating constipation.

18.
Food Funct ; 12(3): 1338-1348, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33448266

ABSTRACT

Rice is a staple food in Korea. The protein in rice reportedly contains higher levels of branched-chain amino acids (BCAAs) than proteins in other grains. Taking BCAAs during exercise can reduce muscle fatigue by reducing muscle glycogen depletion. However, there are limited studies reporting the anti-fatigue effect of rice protein. We investigate the muscular endurance and anti-fatigue effects of the protein hydrolysate of rice syrup meal in mouse models. BALB/C mice were divided into the following groups: control (CON), low and high dose rice syrup meal (RL: 1.5 g kg-1; RH: 3.0 g kg-1), and low and high dose protein hydrolysate of rice syrup meal (PL: 1.5 g kg-1; PH: 3.0 g kg-1). The total activity during a forced swimming test was analyzed by a behavioral assay. The mutual relationship between the anti-fatigue activity and energy metabolism was assessed by biochemical, enzyme activity, and gene expression analyses. The protein hydrolysate of rice syrup meal contained 32.18 mg g-1 BCAAs, such as leucine, isoleucine, and valine, and its BCAA ratio (2.5 : 1.0 : 1.4) was considered effective for endurance exercise. Furthermore, PH administration significantly increased the change in the maximum swimming duration by 4.2 min (3.77 ± 0.74 min) compared to that of the CON group (-0.42 ± 0.55 min, p < 0.01). The PH group showed significantly different changes in the blood glucose and lactate levels compared with the CON group; similarly, the aspartate amino transferase and alanine amino transferase levels were significantly lower in the protein hydrolysate of rice syrup meal group than the CON group (p < 0.001 and p < 0.01, respectively). The protein hydrolysate of rice syrup meal-mediated improvement of endurance performance was accompanied by an increased in adenosine triphosphate content in the muscle and decreased reactive oxygen species accumulation in the liver. In addition, mRNA and protein levels of phospho-AMP activated protein kinase (p-AMPK)/AMPK and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), the major energy-related factors of protein hydrolysate of rice syrup meal, were significantly increased. The protein hydrolysate of rice syrup meal can be utilized as an efficacious natural resource for its muscular-endurance-enhancing and anti-fatigue effects.


Subject(s)
Animal Feed/analysis , Physical Endurance/drug effects , Protein Hydrolysates/pharmacology , Animals , Diet , Energy Metabolism/drug effects , Energy Metabolism/physiology , Gene Expression Regulation/drug effects , Mice , Mice, Inbred BALB C , Oryza/chemistry , Physical Conditioning, Animal , Protein Hydrolysates/administration & dosage , Protein Hydrolysates/chemistry , Swimming
19.
J Ethnopharmacol ; 267: 113511, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33148434

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nelumbo nucifera are used in folk medicine for anti-depressant, anti-convulsant, neuroprotective, and many other purposes. AIM OF THE STUDY: The present work evaluated the sleep potentiating effects of water extract from lotus seed in rat, and the neuropharmacological mechanisms underlying these effects. MATERIALS AND METHODS: Pentobarbital-induced sleep test and electroencephalogram (EEG) analysis were applied to investigate sleep latency, duration, total sleeping time and sleep quality of Lotus extract. In addition, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. RESULTS: We found that the amounts of the possible active compounds GABA (2.33 mg/g) and L-tryptophan (2.00 mg/g) were higher than quinidine (0.55 mg/g) and neferine (0.16 mg/g) in lotus seed extract. High dose (160 mg/kg) administration of lotus extract led to a tendency towards decreased sleep latency time and an increase in sleep duration time compared to the control group in a pentobarbital-induced sleep model (p < 0.05). After high dose administration, total sleep and NREM were significantly increased compared to control, while wake time and REM were significantly decreased. Lotus extract-treated rats showed significantly reduced wake time and increased sleep time in a caffeine-induced model of arousal. The transcription level of GABAA receptor, GABAB receptor, and serotonin receptor tended to increase with dose, and lotus extract showed a strong dose-dependent binding capacity to the GABAA receptor. CONCLUSION: The above results strongly suggest that GABA contained in lotus seed extract acts as a sleep potentiating compound, and that sleep-potentiating activity involves GABAA receptor binding.


Subject(s)
GABA-A Receptor Agonists/pharmacology , Nelumbo , Plant Extracts/pharmacology , Receptors, GABA-A/drug effects , Sleep Aids, Pharmaceutical/pharmacology , Sleep/drug effects , gamma-Aminobutyric Acid/pharmacology , Animals , Dose-Response Relationship, Drug , GABA-A Receptor Agonists/isolation & purification , Male , Mice, Inbred ICR , Nelumbo/chemistry , Plant Extracts/isolation & purification , Rats, Sprague-Dawley , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Signal Transduction , Sleep Aids, Pharmaceutical/isolation & purification , Sleep Latency/drug effects , Time Factors , gamma-Aminobutyric Acid/isolation & purification
20.
Molecules ; 25(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182247

ABSTRACT

This study measured the proliferative activity of malto-oligosaccharide (MOS) as a prebiotic against Bifidobacteria, resistance to digestion in vitro, and changes during in vitro fermentation by human fecal microorganisms. It consisted of 21.74%, 18.84%, and 11.76% of maltotriose, maltotetraose, and maltopentaose produced by amylase (HATT), respectively. When 1% of MOS was added to a modified PYF medium as the carbon source, proliferation of Bifidobacterium breve was increased significantly. During the in vitro digestion test, MOS was partially degraded by intestinal enzymes. Fermentation characteristics by human fecal microorganisms were evaluated by adding 1% galacto-oligosaccharide (GOS), as well as 1% and 2% MOS as carbon sources to the basal medium, respectively. In comparison with the addition of 1% of MOS and GOS, the total short chain fatty acid (SCFA) content increased over time when 2% of MOS was added. The species diversity and richness of intestinal microbiota increased significantly with 2% MOS compared to those with 1% GOS. In addition, the 2% addition of MOS reduced intestinal pathobiont microorganisms and increased commensal microorganisms including Bifidobacterium genus. Collectively, MOS produced by amylase increased the SCFA production and enhanced the growth of beneficial bacteria during in vitro fermentation by human fecal microbiota.


Subject(s)
Amylases/chemistry , Bifidobacterium/growth & development , Dietary Fiber/metabolism , Oligosaccharides/chemistry , Prebiotics , Adult , Anaerobiosis , Carbon/chemistry , Cell Proliferation , Fatty Acids, Volatile/metabolism , Feces , Fermentation , Galactose/chemistry , Gastrointestinal Microbiome , Humans , Male , Maltose/analogs & derivatives , Maltose/chemistry , Trisaccharides/chemistry , Water , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...