Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(11): 108326, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37965132

ABSTRACT

Three deep learning (DL)-based prediction models (PMs) using longitudinal CT images were developed to predict tuberculosis (TB) treatment outcomes. The internal dataset consists of 493 bacteriologically confirmed TB patients who completed the anti-tuberculosis treatment with three-time CT scans, including a pretreatment CT scan and two follow-up CT scans. PM1 was trained using only pretreatment CT scans, and PM2 and PM3 were developed by adding follow-up scans. An independent testing was performed on external dataset comprising 86 TB patients. The area under the curve for classifying success and drug-resistant (DR)-TB was improved on both internal (0.609 vs. 0.625 vs. 0.815) and external (0.627 vs. 0.705 vs. 0.735) dataset by adding follow-up scans. The accuracy and F1-score also showed an increasing tendency in the external test. Regular follow-up CT scans can aid in the treatment prediction, and special attention should be given to early intensive phase of treatment to identify high-risk DR-TB patients.

2.
Eur J Radiol ; 169: 111180, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949023

ABSTRACT

BACKGROUND: To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission. METHODS: An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.e., supervised deep-learning model, SDLM; weakly supervised deep-learning model, WSDLM) are developed independently. Prediction scores of RM and deep-learning models with respectively highest performance are fused to create new fusion models under different fusion strategies. An additional independent validation was conducted on the external cohort comprising 80 patients (160 scans). RESULTS: For RM scheme, 16 optimal radiomics features are finally selected using longitudinal scans. The AUCs of RM for Bagging, Random forest and Gradient boosting were 0.789, 0.773 and 0.764 in the internal cohort and 0.840, 0.834 and 0.816 in the external cohort, respectively. For deep learning-based scheme, AUCs of SDLM and WSDLM were 0.767 and 0.661 in the internal cohort, and 0.823 and 0.651 in the external. The fusion model yields AUCs from 0.767 to 0.802 in the internal cohort, and from 0.831 to 0.857 in the external cohort. CONCLUSIONS: Fusion of radiomics features and deep-learning model may have the potential to predict early failure outcome of DR-TB, which may be combined to help prevent poor TB treatment outcomes.


Subject(s)
Deep Learning , Tuberculosis , Humans , Area Under Curve , Tomography, X-Ray Computed , Treatment Outcome , Tuberculosis/diagnostic imaging , Tuberculosis/drug therapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...