Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38904792

ABSTRACT

Anticholinergic (AC) drugs, a medication class that acts by blocking nicotinic and muscarinic acetylcholine receptors, were first utilized for therapeutic purposes in the mid-19th century. Initial applications were as symptomatic therapy for Parkinson disease (PD), a practice continuing to the present. Initially, the AC drugs used were naturally-occurring plant compounds. Synthetic AC drugs were developed in the late 1940s and predominated in neurological therapeutics. Until the advent of pharmaceuticals acting upon striatal dopaminergic motor pathways, AC drugs provided the only effective means for lessening tremors and other clinical problems of the PD patient. However, because dopaminergic compounds are so effective at meeting the needs of the typical PD patient, AC medications are far less utilized by clinicians today. In recent years, there has been only a few investigations of AC drugs as neurological treatments. This review will revisit the clinical landscape of AC pharmacology and application for movement disorders along with recent research in search of improving therapeutics with AC drugs.

2.
Cells ; 11(7)2022 04 04.
Article in English | MEDLINE | ID: mdl-35406787

ABSTRACT

RNA toxicity contributes to diseases caused by anomalous nucleotide repeat expansions. Recent work demonstrated RNA-based toxicity from repeat-associated, non-AUG-initiated translation (RAN translation). RAN translation occurs around long nucleotide repeats that form hairpin loops, allowing for translation initiation in the absence of a start codon that results in potentially toxic, poly-amino acid repeat-containing proteins. Discovered in Spinocerebellar Ataxia Type (SCA) 8, RAN translation has been documented in several repeat-expansion diseases, including in the CAG repeat-dependent polyglutamine (polyQ) disorders. The ATXN3 gene, which causes SCA3, also known as Machado-Joseph Disease (MJD), contains a CAG repeat that is expanded in disease. ATXN3 mRNA possesses features linked to RAN translation. In this paper, we examined the potential contribution of RAN translation to SCA3/MJD in Drosophila by using isogenic lines that contain homomeric or interrupted CAG repeats. We did not observe unconventional translation in fly neurons or glia. However, our investigations indicate differential toxicity from ATXN3 protein-encoding mRNA that contains pure versus interrupted CAG repeats. Additional work suggests that this difference may be due in part to toxicity from homomeric CAG mRNA. We conclude that Drosophila is not suitable to model RAN translation for SCA3/MJD, but offers clues into the potential pathogenesis stemming from CAG repeat-containing mRNA in this disorder.


Subject(s)
Machado-Joseph Disease , Animals , Drosophila/metabolism , Machado-Joseph Disease/genetics , Machado-Joseph Disease/pathology , Nucleotides , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trinucleotide Repeat Expansion/genetics
3.
Ageing Res Rev ; 74: 101543, 2022 02.
Article in English | MEDLINE | ID: mdl-34923167

ABSTRACT

Endurance exercise is a widely accessible, low-cost intervention with a variety of benefits to multiple organ systems. Exercise improves multiple indices of physical performance and stimulates pronounced health benefits reducing a range of pathologies including metabolic, cardiovascular, and neurodegenerative disorders. Endurance exercise delays brain aging, preserves memory and cognition, and improves symptoms of neurodegenerative pathologies like Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and various ataxias. Potential mechanisms underlying the beneficial effects of exercise include neuronal survival and plasticity, neurogenesis, epigenetic modifications, angiogenesis, autophagy, and the synthesis and release of neurotrophins and cytokines. In this review, we discuss shared benefits and molecular pathways driving the protective effects of endurance exercise on various neurodegenerative diseases in animal models and in humans.


Subject(s)
Alzheimer Disease , Huntington Disease , Parkinson Disease , Animals , Exercise , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...