Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1386428, 2024.
Article in English | MEDLINE | ID: mdl-38784796

ABSTRACT

Allergic asthma (AA) is a common inflammatory airway disease characterized by increased airway hyper-responsiveness (AHR), inflammation, and remodeling. Akkermansia muciniphila is a strictly anaerobic bacterium residing in the gut and is a promising next-generation probiotic to improve metabolic inflammatory syndrome. A recent study suggested the beneficial effect of live A. muciniphila on allergic airway inflammation (AAI) in mice. However, whether the heat-killed form can improve AAI requires further investigation. Mice sensitized and challenged with house dust mites (HDM) develop AA hallmarks including inflammatory cell infiltration, goblet cell hyperplasia, and subepithelial collagen deposition in the lungs. These phenomena were reversed by oral administration of the heat-killed A. muciniphila strain EB-AMDK19 (AMDK19-HK) isolated from the feces of healthy Koreans. Furthermore, AMDK19-HK diminished the HDM-induced AHR to inhaled methacholine, lung mast cell accumulation, and serum HDM-specific IgE levels. It also led to the overall suppression of IL-4, IL-13, and eotaxin production in bronchoalveolar lavage fluids, and Il4, Il5, Il13, and Ccl17 gene expression in lung tissues. Moreover, AMDK19-HK suppressed Th2-associated cytokine production in the splenocytes of HDM-sensitized mice in vitro. Additionally, a combination of 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis in cecal samples revealed that AMDK19-HK modulated the relative abundance of circulating SCFA-associated gut genera, including a positive correlation with Lachnospiraceae_ NK4A136_group and a negative correlation with Lachnoclostridium and significantly increased cecal SCFA concentrations. Finally, AMDK19-HK improved intestinal mucosal barrier function. These results suggest that the oral administration of AMDK19-HK ameliorates HDM-induced AAI in mice by suppressing Th2-mediated immune responses and could have a protective effect against AA development.

2.
Front Microbiol ; 14: 1123547, 2023.
Article in English | MEDLINE | ID: mdl-37007480

ABSTRACT

Introduction: Nonalcoholic steatohepatitis (NASH) is an advanced nonalcoholic fatty liver disease characterized by chronic inflammation and fibrosis. A dysbiosis of the gut microbiota has been associated with the pathophysiology of NASH, and probiotics have proven helpful in its treatment and prevention. Although both traditional and next-generation probiotics have the potential to alleviate various diseases, studies that observe the therapeutic effect of next-generation probiotics on NASH are lacking. Therefore, we investigated whether a next-generation probiotic candidate, Faecalibacterium prausnitzii, contributed to the mitigation of NASH. Methods: In this study, we conducted 16S rRNA sequencing analyses in patients with NASH and healthy controls. To test F. prausnitzii could alleviate NASH symptoms, we isolated four F. prausnitzii strains (EB-FPDK3, EB-FPDK9, EB-FPDK11, and EB-FPYYK1) from fecal samples collected from four healthy individuals. Mice were maintained on a high-fructose high-fat diet for 16 weeks to induce a NASH model and received oral administration of the bacterial strains. Changes in characteristic NASH phenotypes were assessed via oral glucose tolerance tests, biochemical assays, and histological analyses. Results: 16S rRNA sequencing analyses confirmed that the relative abundance of F. prausnitzii reduced significantly in patients with NASH compared to healthy controls (p < 0.05). In the NASH mice, F. prausnitzii supplementation improved glucose homeostasis, prevented hepatic lipid accumulation, curbed liver damage and fibrosis, restored damaged gut barrier functions, and alleviated hepatic steatosis and liver inflammation. Furthermore, real-time PCR assays documented that the four F. prausnitzii strains regulated the expression of genes related to hepatic steatosis in these mice. Discussion: Our study, therefore, confirms that the administration of F. prausnitzii bacteria can alleviate NASH symptoms. We propose that F. prausnitzii has the potential to contribute to the next-generation probiotic treatment of NASH.

3.
J Med Food ; 25(6): 565-575, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35708632

ABSTRACT

Muscular atrophy is a muscle disease in which muscle mass and strength decrease due to aging, injury, metabolic disorders, or chronic conditions. Proteins in muscle tissue are degraded by the ubiquitin-proteasome pathway, and atrophy accelerates this pathway. Akkermansia muciniphila and Faecalibacterium prausnitzii strains are effective agents against metabolic and inflammatory diseases in next-generation probiotic research. In this study, we evaluated the efficacy of A. muciniphila strain EB-AMDK19 and F. prausnitzii strain EB-FPDK11 in a mouse model of muscular atrophy, since atrophy inhibits energy metabolism and immune activation. After oral administration of each strain for 4 weeks, the hind legs of the mice were fixed with a plaster cast to immobilize them for a week. As a result, the administration of EB-AMDK19 and EB-FPDK11 strains improved grip strength but did not increase muscle mass. At the molecular level, A. muciniphila and F. prausnitzii treatments decreased the expression levels of ubiquitin-proteasome genes, atrogin-1, MuRF, and cathepsin L. They increased the expression level of the mitochondrial biogenesis regulatory gene, PGC-1α. The effect of the strains was confirmed by a decrease in myostatin. Furthermore, A. muciniphila and F. prausnitzii modulated the immune function by enhancing ZO-1 and inhibiting IL-6. In particular, EB-AMDK19 promoted the expression of IL-10, an anti-inflammatory cytokine. These results suggest that A. muciniphila and F. prausnitzii may have beneficial effects on muscular atrophy, verified by newly isolated EB-AMDK19 and EB-FPDK11 as potential next-generation probiotics.


Subject(s)
Faecalibacterium prausnitzii , Proteasome Endopeptidase Complex , Akkermansia , Animals , Faecalibacterium prausnitzii/metabolism , Mice , Muscle Strength , Muscular Atrophy/etiology , Ubiquitins/metabolism , Verrucomicrobia/physiology
4.
Sci Rep ; 12(1): 7324, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513696

ABSTRACT

Atopic dermatitis (AD) is a common inflammatory skin disease, and its pathogenesis is closely associated with microbial homeostasis in the gut, namely the gut-skin axis. Particularly, recent metagenomics studies revealed that the abundance of two major bacterial species in the gut, Faecalibacterium prausnitzii and Akkermansia muciniphila, may play a critical role in the pathogenesis of AD, but the effect of these species in AD has not yet been elucidated. To evaluate the potential beneficial effect of F. prausnitzii or A. muciniphila in AD, we conducted an animal model study where F. prausnitzii EB-FPDK11 or A. muciniphila EB-AMDK19, isolated from humans, was orally administered to 2,5-dinitrochlorobenzene (DNCB)-induced AD models using NC/Nga mice at a daily dose of 108 CFUs/mouse for six weeks. As a result, the administration of each strain of F. prausnitzii and A. muciniphila improved AD-related markers, such as dermatitis score, scratching behavior, and serum immunoglobulin E level. Also, the F. prausnitzii and A. muciniphila treatments decreased the level of thymic stromal lymphopoietin (TSLP), triggering the production of T helper (Th) 2 cytokines, and improved the imbalance between the Th1 and Th2 immune responses induced by DNCB. Meanwhile, the oral administration of the bacteria enhanced the production of filaggrin in the skin and ZO-1 in the gut barrier, leading to the recovery of functions. Taken together, our findings suggest that F. prausnitzii EB-FPDK11 and A. muciniphila EB-AMDK19 have a therapeutic potential in AD, which should be verified in humans.


Subject(s)
Dermatitis, Atopic , Dinitrochlorobenzene , Administration, Oral , Akkermansia , Animals , Cytokines/pharmacology , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/therapy , Dinitrochlorobenzene/pharmacology , Disease Models, Animal , Faecalibacterium prausnitzii , Humans , Mice , Skin/pathology , Verrucomicrobia
5.
Carbohydr Polym ; 278: 119016, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973805

ABSTRACT

Increasing α-1,6 linkages in starch molecules generates a large amount of α-limit dextrins (α-LDx) during α-amylolysis, which decelerate the release of glucose at the intestinal α-glucosidase level. This study synthesized highly branched α-glucans from sucrose using Neisseria polysaccharea amylosucrase and Rhodothermus obamensis glycogen branching enzyme to enhance those of slowly digestible property. The synthesized α-glucans (Mw: 1.7-4.9 × 107 g mol-1) were mainly composed of α-1,4 linkages and large proportions of α-1,6 linkages (7.5%-9.9%). After treating the enzymatically synthesized α-glucans with the human α-amylase, the quantity of branched α-LDx (36.2%-46.7%) observed was higher than that for amylopectin (26.8%) and oyster glycogen (29.1%). When the synthetic α-glucans were hydrolyzed by mammalin α-glucosidases, the glucose generation rate decreased because the amount of embedded branched α-LDx increased. Therefore, the macro-sized branched α-glucans with high α-LDx has the potential to be used as slowly digestible material to attenuate postprandial glycemic response.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/metabolism , Glucans/biosynthesis , Glucose/metabolism , Glucosyltransferases/metabolism , Glucans/chemistry , Humans , Neisseria/enzymology , Rhodothermus/enzymology , alpha-Glucosidases/metabolism
6.
Biomacromolecules ; 20(11): 4143-4149, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31556605

ABSTRACT

In this study, we created biocatalytically coated porous starch granules (PSGs) using amylosucrase from Neisseria polysaccharea to apply them as an encapsulant for target-specific delivery. Field-emission scanning electron and confocal laser scanning microscopic images showed that the PSGs were completely concealed by the α-glucan coating layer. This carbohydrate-based encapsulant displayed higher amount of resistant glucan contents due to the elongated chains of the glucan coating, resulting in lower digestibility of these PSGs in simulated digestive fluid systems. Among the various PSGs evaluated, the highest loading efficiency for the bioactive molecule crocin was observed with the ß-amylase-induced PSGs (ß-PSGs) that had the smallest nanosize pores. Furthermore, α-glucan-coated ß-PSGs showed the highest capacity to preserve the loaded crocin when incubated in simulated digestive fluids. This suggests that the α-glucan-coated ß-PSGs can potentially be used for the delayed release of the core material in the upper region of the gastrointestinal tract. Therefore, this system can be potentially utilized as an effective carrier for colon-specific delivery, and the release of the bioactive compound can be triggered by beneficial intestinal microbiota.


Subject(s)
Drug Carriers/pharmacology , Glucans/pharmacology , Glucosyltransferases/pharmacology , Starch/pharmacology , Biocatalysis , Carotenoids/chemistry , Carotenoids/pharmacology , Colon/drug effects , Colon/microbiology , Drug Carriers/chemistry , Drug Delivery Systems , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Glucans/chemistry , Glucosyltransferases/chemistry , Humans , Microscopy, Electron, Scanning , Neisseria/enzymology , Organ Specificity , Porosity , Starch/chemistry
7.
Int J Biol Macromol ; 133: 1102-1106, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31004643

ABSTRACT

Amylosucrase (AS) is a glycosyltransferase that produces linear α-1,4 glucans using sucrose as the sole substrate. In this study, for various applications, α-glucan-coated starch (α-GCS) was produced by AS (20 U/Lreactant) from Neisseria polysaccharea to improve the physicochemical properties of raw normal corn starch (NCS) by applying different reaction conditions (i.e., varying the substrate concentration, pH, and temperature). Field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) showed that raw NCS was successfully coated by α-glucan. Differential scanning calorimetry (DSC) and rapid viscosity analyses (RVA) of the α-GCS confirmed that the α-glucan coating decreased the degree of retrogradation. Notably, compared to raw NCS as a control, starch retrogradation was significantly (p < 0.05) decreased by 13.7% after five weeks. Therefore, the novel α-GCS can be applied as a functional material for controlled retrogradation in the starch-based food industry for shelf-life extension.


Subject(s)
Chemical Phenomena , Glucans/chemistry , Glucosyltransferases/metabolism , Neisseria/enzymology , Starch/chemistry , Food Storage , Solubility
8.
PLoS One ; 13(4): e0196099, 2018.
Article in English | MEDLINE | ID: mdl-29684065

ABSTRACT

d-Tagatose has gained substantial interest due to its potential functionalities as a sucrose substitute. In this study, the gene araA, encoding l-arabinose isomerase (l-AI) from Clostridium hylemonae (DSM 15053), was cloned and expressed in Escherichia coli BL21 (DE3). This gene consists of 1,506 nucleotides and encodes a protein of 501 amino acid residues with a calculated molecular mass of 56,554 Da. Since l-AI was expressed as an intracellular inclusion body, this enzyme was solubilized with guanidine hydrochloride, refolded, and activated with a descending concentration gradient of urea. The purified enzyme exhibited the greatest activity at 50°C, pH 7-7.5, and required 1 mM of Mg2+ as a cofactor. Notably, the catalytic efficiency (3.69 mM-1sec-1) of l-AI from C. hylemonae on galactose was significantly greater than that of other previously reported enzymes. The bioconversion yield of d-tagatose using the C. hylemonae l-arabinose isomerase at 60°C reached approximately 46% from 10 mM of d-galactose after 2 h. From these results, it is suggested that the l-arabinose isomerase from C. hylemonae could be utilized as a potential enzyme for d-tagatose production due to its high conversion yield at an industrially competitive temperature.


Subject(s)
Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Clostridium/enzymology , Hexoses/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Hydrogen-Ion Concentration , Magnesium/metabolism , Molecular Weight , Sweetening Agents/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...