Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(25): 6155-6163, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38842019

ABSTRACT

Advanced glycation end products (AGEs) play a pivotal role in the aging process, regarded as a hallmark of aging. Despite their significance, the absence of adequate monitoring tools has hindered the exploration of the relationship between AGEs and aging. Here, we present a novel AGE-selective probe, AGO, for the first time. AGO exhibited superior sensitivity in detecting AGEs compared to the conventional method of measuring autofluorescence from AGEs. Furthermore, we validated AGO's ability to detect AGEs based on kinetics, demonstrating a preference for ribose-derived AGEs. Lastly, AGO effectively visualized glycation products in a collagen-based mimicking model of glycation. We anticipate that this study will enhance the molecular tool sets available for comprehending the physiological processes of AGEs during aging.


Subject(s)
Fluorescent Dyes , Glycation End Products, Advanced , Glycation End Products, Advanced/analysis , Glycation End Products, Advanced/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Collagen/chemistry , Collagen/metabolism , Molecular Structure , Optical Imaging
2.
Pharmaceutics ; 16(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543318

ABSTRACT

Fluorescent bioprobes are invaluable tools for visualizing live cells and deciphering complex biological processes by targeting intracellular biomarkers without disrupting cellular functions. In addition to protein-binding concepts, fluorescent probes utilize various mechanisms, including membrane, metabolism, and gating-oriented strategies. This study introduces a novel fluorescent mechanism distinct from existing ways. Here, we developed a B cell selective probe, CDrB, with unique transport mechanisms. Through SLC-CRISPRa screening, we identified two transporters, SLCO1B3 and SLC25A41, by sorting out populations exhibiting higher and lower fluorescence intensities, respectively, demonstrating contrasting activities. We confirmed that SLCO1B3, with comparable expression levels in T and B cells, facilitates the transport of CDrB into cells, while SLC25A41, overexpressed in T lymphocytes, actively exports CDrB. This observation suggests that SLC25A41 plays a crucial role in discriminating between T and B lymphocytes. Furthermore, it reveals the potential for the reversible localization of SLC25A41 to demonstrate its distinct activity. This study is the first report to unveil a novel strategy of SLC by exporting the probe. We anticipate that this research will open up new avenues for developing fluorescent probes.

3.
Angew Chem Int Ed Engl ; 63(3): e202312942, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38062619

ABSTRACT

The development of a small-molecule probe designed to selectively target neurons would enhance the exploration of intricate neuronal structures and functions. Among such probes, NeuO stands out as the pioneer and has gained significant traction in the field of research. Nevertheless, neither the mechanism behind neuron-selectivity nor the cellular localization has been determined. Here, we introduce NeuM, a derivative of NeuO, designed to target neuronal cell membranes. Furthermore, we elucidate the mechanism behind the selective neuronal membrane trafficking that distinguishes neurons. In an aqueous buffer, NeuM autonomously assembles into micellar structures, leading to the quenching of its fluorescence (Φ=0.001). Upon exposure to neurons, NeuM micelles were selectively internalized into neuronal endosomes via clathrin-mediated endocytosis. Through the endocytic recycling pathway, NeuM micelles integrate into neuronal membrane, dispersing fluorescent NeuM molecules in the membrane (Φ=0.61). Molecular dynamics simulations demonstrated that NeuM, in comparison to NeuO, possesses optimal lipophilicity and molecular length, facilitating its stable incorporation into phospholipid layers. The stable integration of NeuM within neuronal membrane allows the prolonged monitoring of neurons, as well as the visualization of intricate neuronal structures.


Subject(s)
Clathrin , Micelles , Clathrin/metabolism , Endocytosis/physiology , Endosomes/metabolism , Neurons/metabolism
4.
Chem Commun (Camb) ; 59(61): 9372-9375, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37432659

ABSTRACT

The fluorescent probe pair, NBD-B2 and Styryl-51F, selectively detects NMN over citric acid. NBD-B2 exhibits increased fluorescence, while Styryl-51F shows decreased fluorescence upon NMN addition. Their ratiometric fluorescence change enables highly sensitive and wide-range detection of NMN, effectively distinguishing it not only from citric acid but also other NAD boosters.

SELECTION OF CITATIONS
SEARCH DETAIL
...