Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38391286

ABSTRACT

Ion sources are used in mass and energy spectrometry to ionize the neutral particles entering the instrument. The most classical technique used in planetary exploration is hot filaments emitting electrons with few tens of eV and impacting the neutral particles. The main limitations of such emitters are power consumption and outgassing due to heating of their local environment. Here, we built, tested, and demonstrated the advantages of using carbon nanotubes to replace hot filaments. Such emitters are based on a cold approach, use a limited amount of power, and achieve essentially the same efficiency as the hot filament-based source of ionization.

2.
Nanomaterials (Basel) ; 10(10)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992586

ABSTRACT

We herein present an alternative geometry of nanostructured carbon cathode capable of obtaining a low turn-on field, and both stable and high current densities. This cathode geometry consisted of a micro-hollow array on planar carbon nanostructures engineered by femtosecond laser. The micro-hollow geometry provides a larger edge area for achieving a lower turn-on field of 0.70 V/µm, a sustainable current of approximately 2 mA (about 112 mA/cm2) at an applied field of less than 2 V/µm. The electric field in the vicinity of the hollow array (rim edge) is enhanced due to the edge effect, that is key to improving field emission performance. The edge effect of the micro-hollow cathode is confirmed by numerical calculation. This new type of nanostructured carbon cathode geometry can be promisingly applied for high intensity and compact electron sources.

3.
Nanotechnology ; 24(46): 465303, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24157413

ABSTRACT

We have designed and fabricated a new type of field electron source for a novel onboard mass spectrometer. The new electron source, which is a field effect emitter in a triode configuration, consists of a CNT-column array cathode and an extraction gate with holes that are aligned concentrically with respect to the cylindrical CNT columns. In triode mode operation, cathode currents as large as ~420 µA have been emitted with an anode-to-gate current ratio of ~1.5. To account for the observed emission characteristics of the new electron source, we have carried out multi-scale simulations that combine a three-dimensional (3D) microscopic model in the vicinity of an actual emission site with a two-dimensional (2D) macroscopic model that covers the whole device structure. Because the mesh size in the microscopic 3D model is as small as 100 nm, the contributions of the extruding CNT bundle at the top edge of an electron column can be examined in detail. Unlike the macroscopic 2D simulation that shows only small field enhancement at CNT column's top edge, the multi-scale simulation successfully reproduced the local electric field strongly enough to emit the measured cathode currents and the electric field distribution which is consistent with the measured anode-to-gate current ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...