Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(22): 5963-5966, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966763

ABSTRACT

We propose a type of reflectionless graphene perfect absorber (GPA) in which the reflection channel is forbidden, while the transmission channel is open. Peak absorption of 99.97% in the near-infrared is numerically demonstrated for monolayer graphene loaded on a one-dimensional silicon photonic crystal slab with rhomboid cross sections that supports parity symmetric unidirectional guided resonances (UGRs). Based on the proposed GPA, a transmissive optical modulator with a modulation depth of about 28 dB and an insertion loss of 0.31 dB by varying the Fermi energy level graphene from 0.3 eV to 0.7 eV is numerically presented. Remarkably, the design strategy can be straightforwardly applied to other two-dimensional (2D) materials. Our study may find promising applications in 2D material-based optical modulators and filters.

2.
Opt Lett ; 48(18): 4761-4764, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37707896

ABSTRACT

High quality (Q) factor, tunable unidirectional guided resonances (UGRs) based on a silicon-on-lithium niobate (Si-on-LN) photonic crystal (PhC) slab are proposed and numerically investigated. The Q factors of UGRs decay quadratically with respect to the distance from the Γ point to the wave vector along the Γ-X direction, and high Q factor UGRs are obtained by moving UGR close to the Γ point. Also, a Gires-Tournois interferometer (GTI) based on a UGR with a Q factor of 9465 is numerically demonstrated, which produces a maximum group delay of 30 ps around 1.55 µm with unitary reflectance. The group delay and operation wavelengths of the GTI can be adjusted effectively by tuning the refractive index of lithium niobate (LN) and the periods of the silicon bars. Our study may find applications in PhC surface-emitting lasers, dispersion compensation, and compression of light pulses.

3.
Nanomaterials (Basel) ; 13(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37242052

ABSTRACT

Tunable and low-power microcavities are essential for large-scale photonic integrated circuits. Thermal tuning, a convenient and stable tuning method, has been widely adopted in optical neural networks and quantum information processing. Recently, graphene thermal tuning has been demonstrated to be a power-efficient technique, as it does not require thick spacers to prevent light absorption. In this paper, a silicon-based on-chip Fano resonator with graphene nanoheaters is proposed and fabricated. This novel Fano structure is achieved by introducing a scattering block, and it can be easily fabricated in large quantities. Experimental results demonstrate that the resonator has the characteristics of a high quality factor (∼31,000) and low state-switching power (∼1 mW). The temporal responses of the microcavity exhibit qualified modulation speed with 9.8 µs rise time and 16.6 µs fall time. The thermal imaging and Raman spectroscopy of graphene at different biases were also measured to intuitively show that the tuning is derived from the joule heating effect of graphene. This work provides an alternative for future large-scale tunable and low-power-consumption optical networks, and has potential applications in optical filters and switches.

4.
Genome Biol ; 24(1): 72, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041566

ABSTRACT

Microbiome data from sequencing experiments contain the relative abundance of a large number of microbial taxa with their evolutionary relationships represented by a phylogenetic tree. The compositional and high-dimensional nature of the microbiome mediator challenges the validity of standard mediation analyses. We propose a phylogeny-based mediation analysis method called PhyloMed to address this challenge. Unlike existing methods that directly identify individual mediating taxa, PhyloMed discovers mediation signals by analyzing subcompositions defined on the phylogenic tree. PhyloMed produces well-calibrated mediation test p-values and yields substantially higher discovery power than existing methods.


Subject(s)
Microbiota , Phylogeny
5.
J Allergy Clin Immunol ; 150(3): 612-621, 2022 09.
Article in English | MEDLINE | ID: mdl-35283139

ABSTRACT

BACKGROUND: The impact of breast-feeding on certain childhood respiratory illnesses remains controversial. OBJECTIVE: We sought to examine the effect of exclusive breast-feeding on the early-life upper respiratory tract (URT) and gut microbiome, the URT immune response in infancy, and the risk of common pediatric respiratory diseases. METHODS: We analyzed data from a birth cohort of healthy infants with prospective ascertainment of breast-feeding patterns and common pediatric pulmonary and atopic outcomes. In a subset of infants, we also characterized the URT and gut microbiome using 16S ribosomal RNA sequencing and measured 9 URT cytokines using magnetic bead-based assays. RESULTS: Of the 1949 infants enrolled, 1495 (76.71%) had 4-year data. In adjusted analyses, exclusive breast-feeding (1) had an inverse dose-response on the ⍺-diversity of the early-life URT and gut microbiome, (2) was positively associated with the URT levels of IFN-α, IFN-γ, and IL-17A in infancy, and (3) had a protective dose-response on the development of a lower respiratory tract infection in infancy, 4-year current asthma, and 4-year ever allergic rhinitis (odds ratio [95% CI] for each 4 weeks of exclusive breast-feeding, 0.95 [0.91-0.99], 0.95 [0.90-0.99], and 0.95 [0.92-0.99], respectively). In exploratory analyses, we also found that the protective association of exclusive breast-feeding on 4-year current asthma was mediated through its impact on the gut microbiome (P = .03). CONCLUSIONS: Our results support a protective causal role of exclusive breast-feeding in the risk of developing a lower respiratory tract infection in infancy and asthma and allergic rhinitis in childhood. They also shed light on potential mechanisms of these associations, including the effect of exclusive breast-feeding on the gut microbiome.


Subject(s)
Asthma , Microbiota , Respiratory Tract Infections , Rhinitis, Allergic , Asthma/epidemiology , Asthma/etiology , Breast Feeding , Child , Female , Humans , Immunity , Infant , Prospective Studies , Respiratory System , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology , Rhinitis, Allergic/complications
6.
J Allergy Clin Immunol ; 149(3): 966-976, 2022 03.
Article in English | MEDLINE | ID: mdl-34534566

ABSTRACT

BACKGROUND: The risk factors determining short- and long-term morbidity following acute respiratory infection (ARI) due to respiratory syncytial virus (RSV) in infancy remain poorly understood. OBJECTIVES: Our aim was to examine the associations of the upper respiratory tract (URT) microbiome during RSV ARI in infancy with the acute local immune response and short- and long-term clinical outcomes. METHODS: We characterized the URT microbiome by 16S ribosomal RNA sequencing and assessed the acute local immune response by measuring 53 immune mediators with high-throughput immunoassays in 357 RSV-infected infants. Our short- and long-term clinical outcomes included several markers of disease severity and the number of wheezing episodes in the fourth year of life, respectively. RESULTS: We found several specific URT bacterial-immune mediator associations. In addition, the Shannon ⍺-diversity index of the URT microbiome was associated with a higher respiratory severity score (ß =.50 [95% CI = 0.13-0.86]), greater odds of a lower ARI (odds ratio = 1.63 [95% CI = 1.10-2.43]), and higher number of wheezing episodes in the fourth year of life (ß = 0.89 [95% CI = 0.37-1.40]). The Jaccard ß-diversity index of the URT microbiome differed by level of care required (P = .04). Furthermore, we found an interaction between the Shannon ⍺-diversity index of the URT microbiome and the first principal component of the acute local immune response on the respiratory severity score (P = .048). CONCLUSIONS: The URT microbiome during RSV ARI in infancy is associated with the acute local immune response, disease severity, and number of wheezing episodes in the fourth year of life. Our results also suggest complex URT bacterial-immune interactions that can affect the severity of the RSV ARI.


Subject(s)
Microbiota , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Infant , Respiratory Sounds/etiology , Respiratory System , Respiratory Tract Infections/complications
7.
Microbiome ; 9(1): 117, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016169

ABSTRACT

BACKGROUND: There is general consensus that consumption of dietary fermentable fiber improves cardiometabolic health, in part by promoting mutualistic microbes and by increasing production of beneficial metabolites in the distal gut. However, human studies have reported variations in the observed benefits among individuals consuming the same fiber. Several factors likely contribute to this variation, including host genetic and gut microbial differences. We hypothesized that gut microbial metabolism of dietary fiber represents an important and differential factor that modulates how dietary fiber impacts the host. RESULTS: We examined genetically identical gnotobiotic mice harboring two distinct complex gut microbial communities and exposed to four isocaloric diets, each containing different fibers: (i) cellulose, (ii) inulin, (iii) pectin, (iv) a mix of 5 fermentable fibers (assorted fiber). Gut microbiome analysis showed that each transplanted community preserved a core of common taxa across diets that differentiated it from the other community, but there were variations in richness and bacterial taxa abundance within each community among the different diet treatments. Host epigenetic, transcriptional, and metabolomic analyses revealed diet-directed differences between animals colonized with the two communities, including variation in amino acids and lipid pathways that were associated with divergent health outcomes. CONCLUSION: This study demonstrates that interindividual variation in the gut microbiome is causally linked to differential effects of dietary fiber on host metabolic phenotypes and suggests that a one-fits-all fiber supplementation approach to promote health is unlikely to elicit consistent effects across individuals. Overall, the presented results underscore the importance of microbe-diet interactions on host metabolism and suggest that gut microbes modulate dietary fiber efficacy. Video abstract.


Subject(s)
Gastrointestinal Microbiome , Animals , Diet , Dietary Fiber , Germ-Free Life , Inulin , Mice
8.
Appl Opt ; 59(28): 8768-8772, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33104560

ABSTRACT

Nanostructured selective absorbers have widespread applications ranging from artificial color to thermophotovoltaics and radiative cooling. In this paper, we propose a metamaterial selective absorber with a metal-insulator-metal structure for infrared stealth. It can realize multiband absorption, and one sharp peak is at 1.54 µm, which can be used to reduce the scattering signals in laser-guided missiles. The other two relatively broad absorption peaks are at 2.83 µm and 6.11 µm, which can match the atmospheric absorption band. It can reduce up to 90 % of the detected infrared signals while maintaining a relatively high level of thermal emission capability. The dependence of the spectral characteristics on the incident angle is studied. The infrared signatures of the structure could be suppressed across a wide temperature range.

9.
Opt Express ; 28(19): 27608-27614, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988051

ABSTRACT

Enhance light absorption in two-dimensional (2D) materials are of great importance for the development of many optoelectronic devices such as photodetectors, modulators and thermal emitters. In this paper, a resonant nanostructure based on subwavelength gratings of monolayer molybdenum disulphide (MoS2) is proposed. It is shown numerically that the excitation of guided modes in the proposed structure leads to perfect absorption in the visible range. The linewidth of the absorption spectrum can be narrow down to 0.1 nm. The resonance wavelength exhibits an almost linear dependence on the incidence angle. The proposed structure provides a method to design ultra-narrowband absorbers and similar designs can be applied to other 2D materials. It may find applications for optical filters, directional thermal emitters, 2D materials based lasers and others.

10.
Nanomaterials (Basel) ; 10(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585899

ABSTRACT

Chalcogenide phase change materials enable the realization of novel, non-volatile, switchable electronic and photonic devices. In this paper, we propose a type of rewritable, non-volatile near infrared subwavelength absorber based on chalcogenide phase change materials. Our numerical simulations show that nearly perfect absorption more than 0.99 can be realized in the written state while the absorption of as-deposited or erased state is lower than 0.15 in the studied spectral range, leading to high contrast ratio of reflection more than 20 dB. Continuous tuning of the absorption spectra can be realized not only by varying the geometric parameters of the absorber but also by changing the crystallization ratio of the switched Ge 2 Sb 2 Te 5 (GST). The proposed device may find widespread applications in optical modulation, beam steering and so on.

11.
Micromachines (Basel) ; 11(3)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143457

ABSTRACT

Fano resonances in nanostructures have attracted widespread research interests in the past few years for their potential applications in sensing, switching and nonlinear optics. In this paper, a mid-infrared Fano resonance in a hybrid metal-graphene metamaterial is studied. The hybrid metamaterial consists of a metallic grid enclosing with graphene nanodisks. The Fano resonance arises from the coupling of graphene and metallic plasmonic resonances and it is sharper than plasmonic resonances in pure graphene nanostructures. The resonance strength can be enhanced by increasing the number of graphene layers. The proposed metamaterial can be employed as a high-performance mid-infrared plasmonic sensor with an unprecedented sensitivity of about 7.93 µ m/RIU and figure of merit (FOM) of about 158 . 7 .

12.
Opt Express ; 27(24): 35914-35924, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31878756

ABSTRACT

This paper proposes a hybrid metal-graphene plasmonic sensor which can simultaneously perform multi-spectral sensing in near- and mid-IR ranges. The proposed sensor consists of an array of asymmetric gold nano-antennas integrated with an unpatterned graphene sheet. The gold antennas support sharp Fano-resonances for near-IR sensing while the excitation of graphene plasmonic resonances extend the sensing spectra to the mid-IR range. Such a broadband spectral range goes far beyond previously demonstrated multi-spectral plasmonic sensors. The sensitivity and figure of merit (FOM) as well as their dependence on the thickness of the sensing layer and Fermi energy of graphene are studied systematically. This new type of sensor combines the advantages of conventional metallic plasmonic sensors and graphene plasmonic sensors and may open a new door for high-performance, multi-functional plasmonic sensing.

13.
Nanoscale ; 11(48): 23149-23155, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31573588

ABSTRACT

Planar optical resonant structures with high quality (Q) factors play a crucial role in modern photonic technologies. In this paper, a type of remarkably high-Q resonant nanostructure based on atomically thin two-dimensional (2D) materials is proposed. It is shown theoretically and numerically that with the excitation of leaky modes in the proposed structures, guided mode resonant (GMR) gratings, can achieve resonances with extremely narrow linewidths down to 0.0005 nm and high Q-factors up to millions in the telecom range. The thickness of 2D materials and thus the high-Q resonances can be precisely controlled by changing the layer number of 2D materials, providing a versatile platform for strong light-matter interactions. As an example, dramatic nonlinear reflectance can be realized around the resonance at a power level of a few kW cm-2 with the Kerr effect. This new type of 2D material resonant nanostructure can be employed for a variety of applications ranging from lasers, filters and polarizers to nonlinear optical devices.

14.
Front Genet ; 10: 454, 2019.
Article in English | MEDLINE | ID: mdl-31164901

ABSTRACT

The human microbiome has been associated with health status, and risk of disease development. While the etiology of microbiome-mediated disease remains to be fully elucidated, one mechanism may be through microbial metabolism. Metabolites produced by commensal organisms, including in response to host diet, may affect host metabolic processes, with potentially protective or pathogenic consequences. We conducted multi-omic phenotyping of healthy subjects (N = 136), in order to investigate the interaction between diet, the microbiome, and the metabolome in a cross-sectional sample. We analyzed the nutrient composition of self-reported diet (3-day food records and food frequency questionnaires). We profiled the gut and oral microbiome (16S rRNA) from stool and saliva, and applied metabolomic profiling to plasma and stool samples in a subset of individuals (N = 75). We analyzed these multi-omic data to investigate the relationship between diet, the microbiome, and the gut and circulating metabolome. On a global level, we observed significant relationships, particularly between long-term diet, the gut microbiome and the metabolome. Intake of plant-derived nutrients as well as consumption of artificial sweeteners were associated with significant differences in circulating metabolites, particularly bile acids, which were dependent on gut enterotype, indicating that microbiome composition mediates the effect of diet on host physiology. Our analysis identifies dietary compounds and phytochemicals that may modulate bacterial abundance within the gut and interact with microbiome composition to alter host metabolism.

15.
Opt Lett ; 44(7): 1774-1777, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933144

ABSTRACT

The phenomenon of optical activity has fundamental importance and widespread applications in polarization optics, analytical chemistry, and molecular biology. In the past two decades, there has been much research on designing metamaterials with strong optical activity, which generally employs chiral plasmonic or dielectric nanostructures with resonant responses. In this Letter, we show theoretically and numerically that strong optical activity can be obtained in unpatterned monolayer black phosphorus (BP) without using resonant structures. The optical activity can be attributed to the extrinsic chirality from the mutual orientation of the BP film with in-plane anisotropy and the incident light. The obtained circular dichroism in this atomically thick material is comparable to that in previously reported chiral metamaterials, and the optical activity is inherently tunable by controlling the Fermi level of monolayer BP.

16.
J Agric Food Chem ; 67(17): 4995-5007, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30901214

ABSTRACT

Five analogues of iso-PhABA (20) developed earlier by our research group were designed and synthesized. The bioassay results show that the number and position of methyl groups along with the substitution of hydrogen atoms of the methyl group have a great influence on the activity. Compared with iso-PhABA, the inhibitory activity of diMe-PhABA (21) on seed germination and rice seedling growth decreased slightly; however, it significantly reduced the capability of inhibiting wheat embryo germination. Both 3'-deMe- iso-PhABA (22) and 2'-deMe-PhABA (23) exhibited weak inhibitory activities, and 11'-methoxy iso-PhABA (24a/24b) was much more efficient than its isomer 24c/24d in all bioassays. These results reveal the preservation of quaternary carbon at the 2' or 3' position is necessary to maintain its ABA-like biological activity, and demethylation at the 3' position has a more significant effect. The selectivity of these compounds to different physiological processes makes them available as selective probes for different ABA receptors.


Subject(s)
Abscisic Acid/analogs & derivatives , Abscisic Acid/pharmacology , Germination/drug effects , Oryza/drug effects , Oryza/growth & development , Seeds/drug effects , Seeds/growth & development , Structure-Activity Relationship , Triticum/drug effects , Triticum/growth & development
17.
Opt Express ; 26(17): 22528-22535, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30130944

ABSTRACT

Plasmonics of two-dimensional materials have attracted increasing attention in the past few years. It provides a platform for strong light-matter interactions and enables a variety of novel applications in the infrared and terahertz ranges. In this paper, we study the plasmonic properties of a graphene-black phosphorus (G-BP) bilayer. It exhibits both strong and highly anisotropic plasmonic responses that performs beyond individual graphene and black phosphorus films. Polarization dependent, anisotropic perfect absorption can be realized in this type of two-dimensional plasmonic nanostructures with moderate doping levels. This type of hybrid architecture opens a new door for high performance two-dimensional material plasmonic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...