Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
PLoS One ; 19(7): e0298102, 2024.
Article in English | MEDLINE | ID: mdl-38954731

ABSTRACT

Brain tumors pose a significant threat to health, and their early detection and classification are crucial. Currently, the diagnosis heavily relies on pathologists conducting time-consuming morphological examinations of brain images, leading to subjective outcomes and potential misdiagnoses. In response to these challenges, this study proposes an improved Vision Transformer-based algorithm for human brain tumor classification. To overcome the limitations of small existing datasets, Homomorphic Filtering, Channels Contrast Limited Adaptive Histogram Equalization, and Unsharp Masking techniques are applied to enrich dataset images, enhancing information and improving model generalization. Addressing the limitation of the Vision Transformer's self-attention structure in capturing input token sequences, a novel relative position encoding method is employed to enhance the overall predictive capabilities of the model. Furthermore, the introduction of residual structures in the Multi-Layer Perceptron tackles convergence degradation during training, leading to faster convergence and enhanced algorithm accuracy. Finally, this study comprehensively analyzes the network model's performance on validation sets in terms of accuracy, precision, and recall. Experimental results demonstrate that the proposed model achieves a classification accuracy of 91.36% on an augmented open-source brain tumor dataset, surpassing the original VIT-B/16 accuracy by 5.54%. This validates the effectiveness of the proposed approach in brain tumor classification, offering potential reference for clinical diagnoses by medical practitioners.


Subject(s)
Algorithms , Brain Neoplasms , Humans , Brain Neoplasms/pathology , Brain Neoplasms/classification , Brain Neoplasms/diagnostic imaging , Neural Networks, Computer
2.
Ying Yong Sheng Tai Xue Bao ; 35(4): 877-885, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884222

ABSTRACT

The natural abundance of stable carbon and nitrogen isotopes (δ13C and δ15N) in leaves can provide comprehensive information on the physiological and ecological processes of plants and has been widely used in ecological research. However, recent studies on leaf δ13C and δ15N have focused mainly on woody species, few studies have been conducted on herbs in different vegetation types, and their differences and driving factors are still unclear. In this study, we focused on the herbs in subalpine coniferous forests, alpine shrublands, and alpine mea-dows on the eastern Qinghai-Tibet Plateau, and investigated the differences in leaf δ13C and δ15N of herbs and the driving factors. The results showed that there were significant differences in leaf δ13C and δ15N values of herbs among different vegetation types, with the highest δ13C and δ15N values in alpine meadows, followed by alpine shrublands, and the lowest in subalpine coniferous forests. Using variation partitioning analysis, we revealed that differences in leaf δ13C and δ15N of herbs among various vegetation types were driven by both leaf functional traits and climate factors, with the contribution of leaf functional traits being relatively higher than that of climate factors. Hierarchical partitioning results indicated that mean annual temperature (MAT), chlorophyll content index, leaf nitrogen content per unit area (Narea), and leaf mass per area were the main drivers of leaf δ13C variations of herbs across different vegetation types, while the relative importance of Narea and MAT for variation in leaf δ15N of herbs was much higher than those other variables. There was a strong coupling relationship between leaf δ13C and δ15N as indicated by the result of the ordinary least squares regression. Our findings could provide new insights into understanding the key drivers of leaf δ13C and δ15N variations in herbs across different vegetation types.


Subject(s)
Carbon Isotopes , Ecosystem , Nitrogen Isotopes , Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Tibet , China , Forests , Altitude , Trees/growth & development , Trees/metabolism , Trees/chemistry , Tracheophyta/growth & development , Tracheophyta/chemistry , Tracheophyta/metabolism , Grassland , Poaceae/growth & development , Poaceae/chemistry , Poaceae/metabolism
3.
Sci Total Environ ; 931: 172962, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705306

ABSTRACT

Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant that is characterized by environmental persistence, bioaccumulation, and toxicity. In this study, we investigated the gut microbial response of the red claw crayfish Cherax quadricarinatus after 28 days of exposure to 0 ng/L, 1 ng/L, 10 µg/L, or 10 mg/L of PFOS as a stressor. We measured oxidative stress-related enzyme activities and expression of molecules related to detoxification mechanisms to evaluate the toxic effects of PFOS. We found that PFOS disturbed microbial homeostasis in the gut of C. quadricarinatus, resulting in increased abundance of the pathogen Shewanella and decreased abundance of the beneficial bacterium Lactobacillus. The latter especially disturbed amino acid transport and carbohydrate transport. We also found that the activities of glutathione S-transferase and glutathione peroxidase were positively correlated with the expression levels of cytochrome P450 genes (GST1-1, GSTP, GSTK1, HPGDS, UGT5), which are products of PFOS-induced oxidative stress and play an antioxidant role in the body. The results of this study provided valuable ecotoxicological data to better understand the biological fate and effects of PFOS in C. quadricarinatus.


Subject(s)
Alkanesulfonic Acids , Antioxidants , Astacoidea , Fluorocarbons , Gastrointestinal Microbiome , Oxidative Stress , Water Pollutants, Chemical , Animals , Astacoidea/drug effects , Astacoidea/physiology , Astacoidea/microbiology , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Gastrointestinal Microbiome/drug effects , Water Pollutants, Chemical/toxicity , Antioxidants/metabolism , Glutathione Transferase/metabolism
4.
Ying Yong Sheng Tai Xue Bao ; 35(3): 606-614, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646747

ABSTRACT

As the most senstitive plant organs to environmental changes, leaves serve as crucial indicators of plant survival strategies. We measured the morphology, anatomical traits, gas exchange parameters, and chlorophyll fluorescence parameters of Quercus aquifolioides (evergreen broad-leaved) and Sorbus rehderiana (deciduous broad-leaved) at altitudes of 2600, 2800, 3000, 3200 and 3400 m on the eastern edge of the Qinghai-Tibet Plateau, China. We explored the similarity and difference in their responses to altitude change and the ecological adaptation strategy. The results showed that as the altitude increased, leaf dry matter content of Q. aquifolioides decreased, that of S. rehderiana increased, leaf size for both species gradually decreased, and the palisade coefficient of Q. aquifolioides showed a decreasing trend, contrasting with the increasing trend in S. rehderiana. As the altitude increased, the thickness of leaves, palisade tissue, spongy tissue, upper epidermis, and lower epidermis of both species increased significantly, with the increment of 22.4%, 4.9%, 45.1%, 23.3%, 19.6%, and 28.2%, 46.9%, 8.9%, 25.9%, 20.8% at altitude of 3400 m, respectively, compared with the altitude of 2600 m. The gas exchange and chlorophyll fluorescence parameters of S. rehderiana significantly increased with increasing altitude, while Q. aquifolioides showed the opposite trend. Leaf anatomical traits, gas exchange, and chlorophyll fluorescence parameters of both species displayed considerable plasticity. There were significant correlations among most leaf traits and between leaf traits and altitude. The survival strategy of Q. aquifolioides was more conservative in response to altitude changes, while that of S. rehderiana was more active. Both species adapted to different altitudes by adjusting their own traits.


Subject(s)
Altitude , Plant Leaves , Quercus , Sorbus , Quercus/physiology , Quercus/growth & development , China , Ecosystem , Tibet , Adaptation, Physiological
5.
Mol Divers ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679675

ABSTRACT

Coronatine-insensitive 1 (COI1) has been identified as a target receptor of plant elicitor coronatine (COR). To discover novel plant elicitor leads, most of the potential molecules among 129 compounds discovered from the ZINC database by docking based virtual screening targeting COI1 were quinoline amides. On this lead basis, 2-benzothiadiazolylquinoline-4-carboxamides were rationally designed and synthesized for bioassay. All target compounds did not show significantly in vitro antifungal activity, compounds 4d, 4e and 4o displayed good in vivo systemic acquired resistance activity for Arabidopsis thaliana against Hyaloperonospora arabidopsidis isolate Noco2 with over 80% of inhibitory rate at the concentration of 50 µM. These results indicate that 2-benzothiadiazolylquinoline-4-carboxamides are promising plant elicitor leads for further study.

6.
Small ; 20(6): e2305700, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37797186

ABSTRACT

It is challenging yet promising to design highly accessible N-doped carbon skeletons to fully expose the active sites inside single-atom catalysts. Herein, mesoporous N-doped carbon hollow spheres with regulatable through-pore size can be formulated by a simple sequential synthesis procedure, in which the condensed SiO2 is acted as removable dual-templates to produce both hollow interiors and through-pores, meanwhile, the co-condensed polydopamine shell is served as N-doped carbon precursor. After that, Fe─N─C hollow spheres (HSs) with highly accessible active sites can be obtained after rationally implanting Fe single-atoms. Microstructural analysis and X-ray absorption fine structure analysis reveal that high-density Fe─N4 active sites together with tiny Fe clusters are uniformly distributed on the mesoporous carbon skeleton with abundant through-pores. Benefitted from the highly accessible Fe─N4 active sites arising from the unique through-pore architecture, the Fe─N─C HSs demonstrate excellent oxygen reduction reaction (ORR) performance in alkaline media with a half-wave potential up to 0.90 V versus RHE and remarkable stability, both exceeding the commercial Pt/C. When employing Fe─N─C HSs as the air-cathode catalysts, the assembled Zn-air batteries deliver a high peak power density of 204 mW cm-2 and stable discharging voltage plateau over 140 h.

7.
Small ; 20(8): e2307863, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37822157

ABSTRACT

The low energy efficiency and limited cycling life of rechargeable Zn-air batteries (ZABs) arising from the sluggish oxygen reduction/evolution reactions (ORR/OERs) severely hinder their commercial deployment. Herein, a zeolitic imidazolate framework (ZIF)-derived strategy associated with subsequent thermal fixing treatment is proposed to fabricate dual-atom CoFe─N─C nanorods (Co1 Fe1 ─N─C NRs) containing atomically dispersed bimetallic Co/Fe sites, which can promote the energy efficiency and cyclability of ZABs simultaneously by introducing the low-potential oxidation redox reactions. Compared to the mono-metallic nanorods, Co1 Fe1 ─N─C NRs exhibit remarkable ORR performance including a positive half-wave potential of 0.933 V versus reversible hydrogen electrode (RHE) in alkaline electrolyte. Surprisingly, after introducing the potassium iodide (KI) additive, the oxidation overpotential of Co1 Fe1 ─N─C NRs to reach 10 mA cm-2 can be significantly reduced by 395 mV compared to the conventional destructive OER. Theoretical calculations show that the markedly decreased overpotential of iodide oxidation can be ascribed to the synergistic effects of neighboring Co─Fe diatomic sites as the unique adsorption sites. Overall, aqueous ZABs assembled with Co1 Fe1 ─N─C NRs and KI as the air-cathode catalyst and electrolyte additive, respectively, can deliver a low charging voltage of 1.76 V and ultralong cycling stability of over 230 h with a high energy efficiency of ≈68%.

8.
J Agric Food Chem ; 72(1): 116-127, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109355

ABSTRACT

Since eggs are laid directly on fruit skin, it is typically believed that food odor has little impact on the foraging of Grapholita molesta larvae. It is crucial to note that larvae that hatch on twigs and leaves could need some sort of identification system when foraging. Here, 22 GmolOBP genes were identified from the G. molesta larval transcriptome via the comparison of conserved domain and homology in the protein level. GmolOBP1 had strong affinities for important pear-fruit volatiles, which caused larvae strong behavioral responses. However, after GmolOBP1 silencing, the larvae lost their attraction to methyl salicylate, α-farnesene, butyl acetate, ethyl butanoate, and ethyl hexanoate, and the effects of larvae seeking various pears were significantly reduced. Consequently, GmolOBP1 was required for the reception of pear volatiles and was involved in mediating how G. molesta larvae foraged. Our research revealed the GmolOBP1 foraging signal recognition mechanism as well as potential molecular targets for field pest management.


Subject(s)
Moths , Pyrus , Receptors, Odorant , Animals , Larva/genetics , Larva/metabolism , Receptors, Odorant/metabolism , Fruit/genetics , Fruit/metabolism , Pyrus/genetics , Pyrus/metabolism
9.
J Agric Food Chem ; 71(49): 19372-19384, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38049388

ABSTRACT

Succinate dehydrogenase inhibitors (SDHIs) are a class of fungicides targeting the pathogenic fungi mitochondrial SDH. Here, molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular dynamics (MD) simulations were used to guide SDHI innovation. Molecular docking was performed to explore the binding modes of SDH and its inhibitors. 3D-QSAR models were carried out on 33 compounds with activity against Rhizoctonia cerealis (R. cerealis); their structure-activity relationships were analyzed using comparative molecular field analysis and comparative molecular similarity indices analysis. MD simulations were used to assess the stability of the complexes under physiological conditions, and the results were consistent with molecular docking. Binding free energy was calculated through the molecular mechanics generalized born surface area method, and the binding free energy was decomposed. The results are consistent with the activity of bioassay and indicate that van der Waals and lipophilic interactions contribute the most in the molecular binding process. Afterward, we designed and synthesized 12 compounds under the guidance of the above-mentioned analyses, bioassay found that F9 was active against R. cerealis with the EC50 value of 9.43 µg/mL, and F4, F5, and F9 were active against Botrytis cinerea with an EC50 values of 5.80, 3.17, and 1.63 µg/mL, respectively. They all showed good activity between positive controls of pydiflumetofen and thifluzamide. Our study provides new considerations for effective SDHIs discovery.


Subject(s)
Fungicides, Industrial , Succinate Dehydrogenase , Molecular Docking Simulation , Structure-Activity Relationship , Fungicides, Industrial/chemistry , Quantitative Structure-Activity Relationship , Molecular Dynamics Simulation
10.
Org Biomol Chem ; 22(1): 120-125, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38050463

ABSTRACT

Acid-catalyzed intramolecular cyclization or rearrangement of isoindolinone derivatives is described. 3-Hydroxy/ethoxy-3,4-dihydro-6H-[1,4]-oxazino-[3,4-a]-isoindol-6-ones are obtained in moderate to good yields. Further acid-catalyzed intramolecular rearrangement reactions give 6H-isochromeno-[4,3-b]-pyridin-6-ones. The mild reaction conditions with convenient starting materials show broad substrate scope and provide the target compounds as novel pesticide leads with good fungicidal or systemical acquired resistance activities.

11.
J Vis Exp ; (198)2023 08 11.
Article in English | MEDLINE | ID: mdl-37590531

ABSTRACT

Chronic low back pain (CLBP) is a highly prevalent condition worldwide and a major cause of disability. The majority of patients with CLBP are diagnosed with chronic non-specific low back pain (CNLBP) due to an unknown pathological cause. Manual therapy (MT) is an integral aspect of traditional Chinese medicine and is recognized as Tuina in China. It involves techniques like bone-setting and muscle relaxation manipulation. Despite its clinical efficacy in treating CNLBP, the underlying mechanisms of MT remain unclear. In animal experiments aimed at investigating these mechanisms, one of the main challenges is achieving normative MT on CNLBP model rats. Improving the stability of finger strength is a key issue in MT. To address this technical limitation, a standardized procedure for MT on CNLBP model rats is presented in this study. This procedure significantly enhances the stability of MT with the hands and alleviates common problems associated with immobilizing rats during MT. The findings of this study are of reference value for future experimental investigations of MT.


Subject(s)
Low Back Pain , Musculoskeletal Manipulations , Animals , Rats , Low Back Pain/therapy , China , Fingers , Hand
12.
Psychiatry Res Neuroimaging ; 334: 111674, 2023 09.
Article in English | MEDLINE | ID: mdl-37413860

ABSTRACT

INTRODUCTION: Lumbar disk herniation (LDH) is the preeminent disease of lever positioning manipulation (LPM), a complex disorder involving alterations in brain function. Resting-state functional magnetic resonance imaging (rs-fMRI) has the advantages of non-trauma, zero radiation, and high spatial resolution, which has become an effective means to study brain science in contemporary physical therapy. Furthermore, it can better elucidate the response characteristics of the brain region of LPM intervention in LDH. We utilized two data analysis methods, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) of rs-fMRI, to assess the effects of LPM on real-time brain activity in patients with LDH. METHODS: Patients with LDH (Group 1, n = 21) and age-, gender- and education-matched healthy controls without LDH (Group 2, n = 21) were prospectively enrolled. Brain fMRI was performed for Group 1 at two-time points (TPs): before LPM (TP1) and after one LPM session (TP2). The healthy controls (Group 2) did not receive LPM and underwent only one fMRI scan. Participants in Group 1 completed clinical questionnaires assessing pain and functional disorders using a Visual Analog Scale and the Japanese Orthopaedic Association (JOA), respectively. Furthermore, we employed MNL90 (Montreal Neurological Institute) as a brain-specific template. RESULTS: Compared to the healthy controls (Group 2), the patients with LDH (Group 1) had significant variation in ALFF and ReHo values in brain activity. After the LPM session (TP2), Group 1 at TP1 also showed significant variation in ALFF and ReHo values in brain activity. In addition, the latter (TP2 vs TP1) showed more significant changes in brain regions than the former (Group 1 vs Group 2). The ALFF values were increased in the Frontal_Mid_R and decreased in the Precentral_L in Group 1 at TP2 compared with TP1. The Reho values were increased in the Frontal_Mid_R and decreased in the Precentral_L in Group 1 at TP2 compared with TP1. The ALFF values were increased in the Precuneus_R and decreased in the Frontal_Mid_Orb_L in Group 1 compared with Group 2. Only three brain areas with significant activity in Group 1 compared with Group 2: Frontal_Mid_Orb_L, Frontal_Sup_Orb_L, and Frontal_Mid_R. ALFF value in the Frontal_Mid_R at TP2 correlated positively with the change rates of JOA scores between TP1 and TP2 (P = 0.04, r = 0.319, R2 = 0.102). DISCUSSION: Patients with LDH showed abnormal brain ALFF and ReHo values, which were altered after LPM. The default mode network, prefrontal cortex, and primary somatosensory cortex regions could predict real-time brain activity for sensory and emotional pain management in patients with LDH after LPM.


Subject(s)
Brain Mapping , Intervertebral Disc Displacement , Humans , Brain Mapping/methods , Intervertebral Disc Displacement/diagnostic imaging , Intervertebral Disc Displacement/therapy , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Prefrontal Cortex
13.
J Pain Res ; 16: 2115-2129, 2023.
Article in English | MEDLINE | ID: mdl-37361428

ABSTRACT

Background: Research on the brain mechanisms underlying manual therapy (MT)-induced analgesia has been conducted worldwide. However, no bibliometric analysis has been performed on functional magnetic resonance imaging (fMRI) studies of MT analgesia. To provide a theoretical foundation for the practical application of MT analgesia, this study examined the current incarnation, hotspots, and frontiers of fMRI-based MT analgesia research over the previous 20 years. Methods: All publications were obtained from the Science Citation Index-Expanded (SCI-E) of Web of Science Core Collection (WOSCC). We used CiteSpace 6.1.R3 to analyze publications, authors, cited authors, countries, institutions, cited journals, references, and keywords. We also evaluated keyword co-occurrences and timelines, and citation bursts. The search was conducted from 2002-2022 and was completed within one day on October 7, 2022. Results: In total, 261 articles were retrieved. The total number of annual publications showed a fluctuating but overall increasing trend. Author B. Humphreys had the highest number of publications (eight articles) and J. E. Bialosky had the highest centrality (0.45). The United States of America (USA) was the country with the most publications (84 articles), accounting for 32.18% of all publications. Output institutions were mainly the University of Zurich, University of Switzerland, and the National University of Health Sciences of the USA. The Spine (118) and the Journal of Manipulative and Physiological Therapeutics (80) were most frequently cited. The four hot topics in fMRI studies on MT analgesia were "low back pain", "magnetic resonance imaging", "spinal manipulation", and "manual therapy." The frontier topics were "clinical impacts of pain disorders" and "cutting-edge technical capabilities offered by magnetic resonance imaging". Conclusion: fMRI studies of MT analgesia have potential applications. fMRI studies of MT analgesia have linked several brain areas, with the default mode network (DMN) garnering the most attention. Future research should include international collaboration and RCTs on this topic.

14.
Insects ; 14(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37233096

ABSTRACT

Sexual generation is an important generation in the life cycle of host-alternating aphids, and its population size determines the intensity of the peak in the next spring. Although male trapping techniques based on olfactory stimuli have been successfully established in the field, the biological basis of olfactory perception in males is unclear. In this study, we compared the morphology of antennae and the types, sizes, numbers, and distribution of sensilla between males and sexual females in the host-alternating aphid Semiaphis heraclei (Hemiptera: Aphididae). We found that flagellum length differentiation contributed to the majority of the sexual dimorphism of antennae. Most sensillum types or subtypes, including trichoid sensilla subtype I, campaniform sensilla, and primary rhinaria subtypes I and II, were enlarged in males. In addition, males bore more trichoid sensilla subtype I than sexual females. In particular, secondary rhinaria were present in males only and could not be detected in sexual females. These results revealed the structural basis of male olfactory perception. Our findings provide insight into the mechanism underlying chemical communication between sexual aphids and could thus be useful for pest control.

15.
Small ; 19(21): e2207991, 2023 May.
Article in English | MEDLINE | ID: mdl-36843282

ABSTRACT

Single-atom Fe-N-C (Fe1 -N-C) materials represent the benchmarked electrocatalysts for oxygen reduction reaction (ORR). However, single Fe atoms in the carbon skeletons cannot be fully utilized due to the mass transfer limitation, severely restricting their intrinsic ORR properties. Herein, a self-sacrificing template strategy is developed to fabricate ultrathin nanosheets assembled Fe1 -N-C hollow microspheres (denoted as Fe1 /N-HCMs) by rational carbonization of Fe3+ chelating polydopamine coated melamine cyanuric acid complex. The shell of Fe1 /N-HCMs is constructed by ultrathin nanosheets with thickness of only 2 nm, which is supposed to be an ideal platform to isolate and fully expose single metal atoms. Benefiting from unique hierarchical hollow architecture with highly open porous structure, 2 nm-thick ultrathin nanosheet subunits and abundant Fe-N4 O1 active sites revealed by X-ray absorption fine structure analysis, the Fe1 /N-HCMs exhibit high ORR performance with a positive half-wave potential of 0.88 V versus the reversible hydrogen electrode and robust stability. When served as air-cathode catalysts with ultralow loading mass of 0.25 mg cm-2 , Fe1 /N-HCMs based Zn-air batteries present a maximum power density of 187 mW cm-2 and discharge specific capacity of 806 mA h gZn -1 in primary Zn-air batteries, all exceeding those of commercial Pt/C.

16.
Chinese Pharmacological Bulletin ; (12): 1534-1540, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013744

ABSTRACT

Aim To study the protective effect of eplerenone on the contralateral kidney in pregnant rats with chronic kidney disease (CKD) and its mechanism. Methods Female Wistar rats were randomly divided into sham-operation group, sham-operation pregnancy group, model group and eplerenone group. The rats in the model group and eplenone group had ligation unilateral ureter, and the rats in the eplenone group were treated with 100 mg • kg

17.
International Eye Science ; (12): 1870-1874, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996901

ABSTRACT

AIM: To investigate the efficacy of micropulse laser combined with intravitreal injection of ranibizumab in the treatment of macular edema(ME)secondary to non-ischemic branch retinal vein occlusion(BRVO).METHODS: A total of 200 cases(200 eyes)of non-ischemic BRVO secondary to ME who were treated in our hospital from January 2020 to March 2022 were selected and divided into the control group(100 cases, 100 eyes)and the observation group(100 cases, 100 eyes)by random number table. The control group was given intravitreal injection of ranibizumab, and the observation group was given micropulse laser combined with intravitreal injection of ranibizumab. The best corrected visual acuity(BCVA), central macular thickness(CMT), subfoveal choroidal thickness(SFCT), total number of injections, macular leakage and complications were compared between two groups.RESULTS: After treatment, the BCVA of the two groups were improved, and the BCVA of the observation group was better than those in the control group at 1, 3, 6 and 12mo after treatment(all P<0.05). After treatment, the CMT and SFCT of the two groups decreased, and the CMT and SFCT of the observation group was lower than those in the control group at 1, 3, 6 and 12mo after treatment(all P<0.05). The total number of injections in the observation group during the treatment period was less than that in the control group [(4.06±1.12)times vs.(5.32±1.15)times](t=5.852, P<0.001). The leakage rates of the control group and the observation group after 12mo of treatment were 69.0% and 27.0% respectively, with statistical significance between the two groups(χ2=35.337, P<0.001). The incidence of complications in the control group and observation group were 11.0% and 5.0% respectively, with no statistical significance between the two groups(χ2=2.446, P=0.118).CONCLUSION: Micropulse laser combined with intravitreal injection of ranibizumab has a significant clinical efficacy in the treatment of ME secondary to non-ischemic BRVO, which is safe and can improve patients' vision and ME, reduce the total doses of ranibizumab without increasing the incidence of complications.

18.
International Eye Science ; (12): 1279-1284, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978619

ABSTRACT

AIM: To investigate the efficacy and safety of orthokeratology combined with 0.01% atropine solution in adolescents with myopia.METHODS: A total of 100 adolescent myopic patients(100 right eyes)who received treatment at the Department of Ophthalmology, People's Hospital of Hengshui from January 2019 to January 2022 were enrolled. All patients were divided into two groups based on the patient's preferences and randomized controlled principles: control group(n=50)and experimental group(n=50). Patients in the control group received orthokeratology alone, while those in the experimental group received orthokeratology in combination with 0.01% atropine solution. Treatment data for both groups were collected at 1, 3, 6, 9 and 12mo after treatment. The observed indicators included refraction, corneal curvature, axial length(AL), central corneal thickness(CCT), pupil diameter(PD), lipid layer thickness(LLT), break-up Time(BUT), root-mean-square of higher-order aberration(RMSh), subfoveal choroidal thickness(SFCT), corneal endothelial cell density(CD), and hexagonal cell ratio(HEX). The adverse reactions experienced during follow-up period were also observed and recorded.RESULTS: After 12mo of treatment, the refraction, corneal curvature, and AL in the experimental group were -2.42±0.17D, 38.89±1.18D and 25.44±0.23mm, respectively, which were significantly better than the control group(-2.56±0.19D, 40.12±1.65D and 25.54±0.19 mm, all P<0.05). The CCT of the experimental group(538±33 μm)was lower than that of the control group(545±41 μm), while the PD of the experimental group was higher than that of the control group(6.38±0.38 mm vs. 6.12±0.37 mm, P<0.05). LLT and BUT in the experimental group was 61.14±8.41 nm and 9.24±2.05s, respectively, which were significantly higher than those in the control group(56.14±7.22 nm and 7.27±1.99s, all P<0.05). RMSh in the experimental group was lower than that of the control group(0.73±0.21 μm vs. 0.85±0.12 μm, P<0.05), and SFCT in the experimental group was significantly higher than that of the control group(289±55 μm vs. 282±59 μm, P<0.05). Additionally, after 12mo of treatment, there was no significant difference in CD and HEX between the experimental group and the control group(all P>0.05). The main adverse reactions of both groups during treatment period were photophobia, anaphylaxis, conjunctivitis and keratitis, but there was no significant difference between the two groups(all P>0.05).CONCLUSION: Compared to orthokeratology alone, the combination of orthokeratology and 0.01% atropine solution effectively prevents and improves the development of adolescent myopia without increasing the incidence of adverse reactions.

19.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1913-1920, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534262

ABSTRACT

This study explored whether Sagittaria sagittifolia polysaccharides(SSP) activates the nuclear factor erythroid-2-related factor2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway to protect against liver damage jointly induced by multiple heavy metals. First, based on the proportion of dietary intake of six heavy metals in rice available in Beijing market, a heavy metal mixture was prepared for inducing mouse liver injury and HepG2 cell injury. Forty male Kunming mice were divided into five groups: control group, model group, glutathione positive control group, and low-and high-dose SSP groups, with eight mice in each group. After 30 days of intragastric administration, the liver injury in mice was observed by HE staining. In the in vitro experiment, MTT assay was conducted to detect the effects of SSP at 0.25, 0.5, 1, and 2 mg·mL~(-1) on HepG2 cell survival at different time points. The content of alanine transaminase(ALT) and aspartate aminotransferase(AST) in the 48-h cell culture fluid was measured using micro-plate cultivation method, followed by the detection of the change in reactive oxygen species(ROS) content by flow cytometry. The mRNA expression levels of Nrf2 and HO-1 in cells were determined by RT-PCR, and their protein expression by Western blot. HE staining results showed that compared with the model group, the SSP administration groups exhibited significantly alleviated inflammatory cell infiltration and fatty infiltration in the liver, with better outcomes observed in the high-dose SSP group. In the in vitro MTT assay, compared with the model group, SSP at four concentrations all significantly increased the cell survival rate, decreased the ALT, AST, and ROS content(P<0.05), and down-regulated Nrf2 and HO-1 mRNA and protein expression(P<0.05). SSP significantly improves inflammatory infiltration in the liver tissue of mice exposed to a variety of heavy metals and corrects the liver fat degeneration, which may be related to its regulation of the Nrf2/HO-1 signaling pathway, reduction of ROS, and alleviation of oxidative damage.


Subject(s)
Metals, Heavy , Sagittaria , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Liver , Male , Metals, Heavy/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Polysaccharides/pharmacology , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Sagittaria/genetics , Sagittaria/metabolism
20.
J Inorg Biochem ; 232: 111810, 2022 07.
Article in English | MEDLINE | ID: mdl-35367820

ABSTRACT

The hepatic protective role of Sagittaria sagittifolia polysaccharide (SSP) and its possible mechanism were discussed in mice and L02 hepatocytes injured by heavy metals mixture of Cd + Cr (VI) + Pb + Mn + Zn + Cu. After 30-day intervention, blood and liver samples were collected for the relevant assessments. Methyl thiazolyl tetrazolium (MTT) assay showed 24 h was the best protecting point and the SSP protection at 1 mg/mL was strongest in L02 hepatocytes. SSP can alleviated hepatic injury, as evidenced by significantly decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and the malondialdehyde (MDA) content, also increased the superoxide dismutase (SOD) activity and glutathione (GSH), total sulphydryl (T-SH) contents. SSP effectively reduced pathological damage of mice and accumulation of heavy metals in liver, as well as decreased the level of reactive oxygen species (ROS) in L02 hepatocytes. After SSP treatment, the protein expressions or gene transcription of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 (NQO1) and heme oxygenase1 (HO-1) decreased in L02. The protein expression of Nrf2 and NQO1 were increased while HO-1 was decreased in liver. Besides, SSP can attenuates apoptosis through reducing the protein expression of Bcl-2-associated X protein (Bax) and caspase-3, and increasing B-cell lymphoma gene 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl). SSP protects against six-heavy-metal-induced hepatic injury in mice and L02 hepatocytes. Supported by Nrf2 gene silencing, the mechanisms may correlate with activating Nrf2 pathway to mitigate oxidative stress and apoptosis.


Subject(s)
Lymphoma, B-Cell , Metals, Heavy , Sagittaria , Apoptosis , Glutathione/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , Liver/metabolism , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Metals, Heavy/metabolism , Metals, Heavy/toxicity , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Polysaccharides/metabolism , Polysaccharides/pharmacology , Sagittaria/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...