Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1865(1): 184081, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36342013

ABSTRACT

Carotenoids play an important role in the protection of biomembranes against oxidative damage. Their function depends on the surroundings and the organization of the lipid membrane they are embedded in. Carotenoids are located parallel or perpendicular to the surface of the lipid bilayer. The influence of carotenoids on the organization of the lipid bilayer in the stratum corneum has not been thoroughly considered. Here, the orientation of the exemplary cutaneous carotenoids lycopene and zeaxanthin in a hydrated ceramide NS24 bilayer model and the influence of carotenoids on the lateral organization of the lipid bilayer model were studied by means of molecular dynamics simulations for 32 °C and 37 °C. The results confirm that lycopene is located parallel and zeaxanthin perpendicular to the surface of the lipid bilayer. The lycopene-loaded lipid bilayer appeared to have a strong orthorhombic organization, while zeaxanthin-loaded and pure lipid bilayers were organized in a disordered hexagonal-like and liquid-like state, respectively. The effect is stronger at 32 °C compared to 37 °C based on p-values. Therefore, it was assumed that carotenoids without hydroxyl polar groups in their structure facilitate the formation of the orthorhombic organization of lipids, which provides the skin barrier function. It was shown that the distance between carotenoid atoms matched the distance between atoms in the lipids, indicating that parallel located carotenoids without hydroxyl groups serve as a skeleton for lipid membranes inside the lamellae. The obtained results provide reasonable prediction of the overall qualitative properties of lipid model systems and show the importance of parallel-oriented carotenoids in the development and maintenance of the skin barrier function.


Subject(s)
Ceramides , Lipid Bilayers , Ceramides/chemistry , Lipid Bilayers/chemistry , Zeaxanthins , Molecular Dynamics Simulation , Lycopene , Carotenoids , Skeleton
2.
RSC Adv ; 11(54): 34015-34023, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-35497285

ABSTRACT

Hybrid halide perovskites are drawing great interest for photovoltaic and thermoelectric applications, but the relationship of thermal conductivities with vacancy defects remains unresolved. Here, we present a systematic investigation of the thermal conductivity of perfect and defective CH3NH3PbI3, performed using classical molecular dynamics with an ab initio-derived force field. We calculate the lattice thermal conductivity of perfect CH3NH3PbI3 as the temperature increases from 300 K to 420 K, confirming a good agreement with the previous theoretical and experimental data. Our calculations reveal that the thermal conductivities of defective systems at 330 K, containing vacancy defects such as VMA, VPb and VI, decrease overall with some slight rises, as the vacancy concentration increases from 0 to 1%. We show that such vacancies act as phonon scattering centers, thereby reducing the thermal conductivity. Moreover, we determine the elastic moduli and sound velocities of the defective systems, revealing that their slower sound speed is responsible for the lower thermal conductivity. These results could be useful for developing hybrid halide perovskite-based solar cells and thermoelectric devices with high performance.

3.
Phys Chem Chem Phys ; 21(16): 8408-8417, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30942793

ABSTRACT

Developing efficient anode materials with low electrode voltage, high specific capacity and superior rate capability is urgently required on the road to commercially viable sodium-ion batteries (SIBs). Aiming at finding a new SIB anode material, we investigate the electrochemical properties of NaxTiO2 compounds with unprecedented penta-oxygen-coordinated trigonal bipyramid (TB) structures by using first-principles calculations. Identifying the four different TB phases, we perform the optimization of their crystal structures and calculate their energetics such as sodium binding energy, formation energy, electrode potential and activation energy for Na ion migration. The computations reveal that the TB-I phase is the best choice among the four TB phases for a SIB anode material due to a relatively low volume change of under 4% upon Na insertion, low electrode voltage under 1.0 V with a possibility of realizing the highest specific capacity of ∼335 mA h g-1 from full sodiation at x = 1, and reasonably low activation barriers under 0.35 eV at the Na content from x = 0.125 to x = 0.5. Through the analysis of electronic density of states and charge density difference upon sodiation, we find that the NaxTiO2 compounds in TB phases change from electron insulating to electron conducting materials due to the electron transfer from Na atoms to Ti ions, offering the Ti4+/Ti3+ redox couple for SIB operation.

4.
Phys Chem Chem Phys ; 18(46): 31566-31578, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27831576

ABSTRACT

For the purpose of elucidating the gas sensing mechanism of SnO2 for NO and NO2 gases, we determine the phase diagram of the SnO2(110) surface in contact with an O2 and NO gas environment by means of an ab initio thermodynamic method. Firstly we build a range of surface slab models of oxygen pre-adsorbed SnO2(110) surfaces using (1 × 1) and (2 × 1) surface unit cells and calculate their Gibbs free energies considering only oxygen chemical potential. The fully reduced surface containing the bridging and in-plane oxygen vacancies under oxygen-poor conditions, while the fully oxidized surface containing the bridging oxygen atom and the oxygen dimer under oxygen-rich conditions, and the stoichiometric surface in between, was proved to be most stable. Using the selected plausible NO-adsorbed surfaces, we then determine the surface phase diagram of SnO2(110) surfaces in (ΔµO, ΔµNO) space. Under NO-rich conditions, the most stable surfaces were those formed by NO adsorption on the most stable surfaces in contact with only oxygen gas. Through the analysis of electronic charge transfer and density of states during NOx adsorption on the surface, we provide a meaningful understanding about the gas sensing mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...