Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
BMC Musculoskelet Disord ; 25(1): 341, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684987

ABSTRACT

BACKGROUND: To analyse the causal associations of different physical measures with osteoarthritis knee (KOA). METHODS: Exposure factors (weight, body mass index (BMI), body fat percentage, waist circumference, hip circumference, waist-hip ratio (WHR), and basal metabolic rate (BMR)), and outcome factor KOA were analyzed by inverse-variance weighted (IVW) method, along with heterogeneity test, sensitivity and pleiotropy analyses. Meta-analysis was used to combine the effect values of IVW methods in different data sources. RESULTS: Weight, BMI, body fat percentage, waist circumference, hip circumference and BMR analyses showed causal association with increased KOA risk, while WHR analysis indicated a reduction of the incidence of KOA. P-value for all the results was less than 0.05 and F-value large than 20. All results were negative for heterogeneity tests and sensitivity analyses, and there was pleiotropy in weight and BMR. Meta-analysis results showed that the results of Odds Ratios (95% Confidence Intervals) for Weight (1.43(1.35-1.51)), BMI (1.40(1.10-1.78)), body fat percentage (1.56(1.44-1.68)), waist circumference (1.40(1.10-1.78)), hip circumference (1.37(1.30-1.44)), WHR (0.86(0.71-1.04)) and BMR (1.36(1.27-1.46) were consistent with the ones by Mendelian randomization analyses. CONCLUSIONS: Body fat percentage may be a better indicator of KOA than BMI. In addition, weight and BMR may have a causal effect in KOA, but WHR does not have a causal relationship. BMI, body fat percentage, waist circumference, and hip circumference has a causal effect on KOA.


Subject(s)
Body Composition , Body Mass Index , Mendelian Randomization Analysis , Osteoarthritis, Knee , Waist-Hip Ratio , Humans , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/epidemiology , Osteoarthritis, Knee/diagnosis , Waist Circumference , Risk Factors
2.
BMC Genomics ; 24(1): 497, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644405

ABSTRACT

BACKGROUND: Growing evidence has shown that gut microbiome composition is associated with breast cancer (BC), but the causality remains unknown. We aimed to investigate the link between BC prognosis and the gut microbiome at various oestrogen receptor (ER) statuses. METHODS: We performed a genome-wide association study (GWAS) to analyse the gut microbiome of BC patients, the dataset for which was collected by the Breast Cancer Association Consortium (BCAC). The analysis was executed mainly via inverse variance weighting (IVW); the Mendelian randomization (MR) results were verified by heterogeneity tests, sensitivity analysis, and pleiotropy analysis. RESULTS: Our findings identified nine causal relationships between the gut microbiome and total BC cases, with ten and nine causal relationships between the gut microbiome and ER-negative (ER-) and ER-positive (ER+) BC, respectively. The family Ruminococcaceae and genus Parabacteroides were most apparent among the three categories. Moreover, the genus Desulfovibrio was expressed in ER- BC and total BC, whereas the genera Sellimonas, Adlercreutzia and Rikenellaceae appeared in the relationship between ER + BC and total BC. CONCLUSION: Our MR inquiry confirmed that the gut microbiota is causally related to BC. This further explains the link between specific bacteria for prognosis of BC at different ER statuses. Considering that potential weak instrument bias impacts the findings and that the results are limited to European females due to data constraints, further validation is crucial.


Subject(s)
Breast Neoplasms , Gastrointestinal Microbiome , Female , Humans , Breast Neoplasms/genetics , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Prognosis , Bacteroidetes , Clostridiales , Receptors, Estrogen/genetics
4.
Chin Med J (Engl) ; 136(14): 1663-1670, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37279392

ABSTRACT

BACKGROUND: As the efficacy of programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors combined with chemotherapy in curing breast cancer is still controversial, this meta-analysis compares the efficacy and safety of PD-1/PD-L1 inhibitors combined with chemotherapy and chemotherapy alone in the treatment of breast cancer, which provides guidance for the clinical treatment. METHODS: Relevant studies published as of April 2022 in the various databases including EMBASE, PubMed, and Cochrane Library were selected. Randomized controlled trials (RCTs) in which control patients underwent chemotherapy alone and experimental group patients underwent combination chemotherapy and PD-1/PD-L1 inhibitor treatment were included in this investigation. Investigations without complete information, researches from which information could not be extracted, duplicate articles, animal studies, review articles, and systematic reviews were excluded. STATA 15.1 was employed for all statistical analyses. RESULTS: In total, eight eligible studies were identified, revealing that combination chemotherapy and PD-1/PD-L1 inhibitor treatment was linked to significant increases in progression-free survival (PFS) relative to chemotherapy alone (hazard ratio [HR] = 0.83, 95% confidence interval [CI]: 0.70-0.99, P = 0.032) but not overall survival (HR = 0.92, 95% CI: 0.80-1.06, P = 0.273). Pooled adverse event rates were also increased within the group of combination treatment relative to the chemotherapy group (risk ratio [RR] = 1.08, 95% CI: 1.03-1.14, P = 0.002). Specifically, nausea rates were lesser within the group of combination treatment relative to the group of chemotherapy (RR = 0.48, 95% CI: 0.25-0.92, P = 0.026). Subgroup analyses indicated that the PFS of patients who underwent combination atezolizumab or pembrolizumab and chemotherapy treatment were substantially longer than those of patients who underwent chemotherapy alone (HR = 0.79, 95% CI: 0.69-0.89, P ≤0.001; HR = 0.79, 95% CI: 0.67-0.92, P = 0.002). CONCLUSIONS: The pooled results suggest that combination chemotherapy and PD-1/PD-L1 inhibitor treatment approaches help prolong PFS in breast cancer patients, but have no statistically significant effect on overall survival (OS). Additionally, combination therapy can significantly improve complete response rate (CRR) compared with chemotherapy alone. However, combination therapy was associated with greater rates of adverse events.


Subject(s)
Breast Neoplasms , Immune Checkpoint Inhibitors , Humans , B7-H1 Antigen/antagonists & inhibitors , Drug Therapy, Combination , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Breast Neoplasms/drug therapy
5.
Pathol Res Pract ; 247: 154571, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257246

ABSTRACT

Chemotherapy remains a critical component of triple-negative breast cancer (TNBC) treatment; however, patients often develop resistance to chemotherapeutic agents. Accumulating evidence indicates that deubiquitylases (DUBs) play pivotal roles in regulating cell proliferation, differentiation, apoptosis, and tumorigenesis. Deubiquitylase OTUD1 is considered a tumor suppressor in various cancers, yet its role in doxorubicin sensitivity in breast cancer patients remains inadequately understood. In this study, we investigated the expression levels and prognostic role of OTUD1 in breast cancer. Our findings demonstrated that OTUD1 was downregulated in TNBC, and lower OTUD1 expression levels were correlated with poor prognosis. We utilized the CCK-8 cell viability assay, flow cytometric analysis, and a TNBC mouse xenograft model to examine the influence of OTUD1 on doxorubicin (DOX) chemotherapy sensitivity in vitro and in vivo. Western blot and immunohistochemistry were employed to explore the correlation between OTUD1 and P16. Our results indicated that upregulation of OTUD1 expression inhibits TNBC cell proliferation and enhances its sensitivity to doxorubicin. Additionally, rescue experiments confirmed that the chemosensitizing effect of OTUD1 overexpression could be reversed by the inhibition of P16. Therefore, our findings reveal that OTUD1 sensitizes TNBC cells to DOX by upregulating P16 expression, suggesting a potential new diagnostic biomarker and therapeutic target for the future treatment of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Doxorubicin/pharmacology , Apoptosis , Cell Proliferation , Gene Expression Regulation, Neoplastic , Ubiquitin-Specific Proteases
6.
ACS Omega ; 8(2): 2780-2792, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687039

ABSTRACT

Myrrh is the dried resin of Commiphora Myrrh Engl., which exerts anticancer properties. However, its effects and molecular mechanisms in triple-negative breast cancer (TNBC) remain unclear. In this study, we used network pharmacology to screen Z-Guggulsterone (Z-GS) as a characteristic active component of myrrh. Cell Counting Kit-8 proliferation assays showed that Z-GS inhibited proliferation of the TNBC cell lines MDA-MB-468 and BT-549. Transwell assays also showed that Z-GS inhibited TNBC migration and invasion phenotypes. Our network pharmacology combined with RNA-sequencing analyses showed that Z-GS affected cell cycle and apoptosis processes in TNBC cells, mainly via p53 signaling, to regulate key CCNB1 (cyclin B1), PLK1 (polo-like kinase 1), and p53 targets. Flow cytometry revealed that Z-GS arrested the cell cycle at the G2/M phase and increased apoptosis in TNBC cells. Western blotting and quantitative real-time polymerase chain reaction studies confirmed that Z-GS functioned via the p53-mediated downregulation of CCNB1 and PLK1 expression. In vivo studies showed that Z-GS effectively inhibited TNBC progression. Collectively, Z-GS exhibited potential anti-TNBC activity and may functions via the p53/CCNB1/PLK1 pathway.

7.
Curr Genomics ; 24(5): 307-329, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38235352

ABSTRACT

Introduction: Aminoacyl tRNA synthetase complex interacting with multifunctional protein 2 (AIMP2) is a significant regulator of cell proliferation and apoptosis. Despite its abnormal expression in various tumor types, the specific functions and effects of AIMP2 on tumor immune cell infiltration, proliferation, and migration remain unclear. Materials and Methods: To assess AIMP2's role in tumor immunity, we conducted a pan-cancer multi-database analysis using the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Lines Encyclopedia (CCLE) datasets, examining expression levels, prognosis, tumor progression, and immune microenvironment. Additionally, we investigated AIMP2's impact on breast cancer (BRCA) proliferation and migration using cell counting kit 8 (CCK-8) assay, transwell assays, and western blot analysis. Results: Our findings revealed that AIMP2 was overexpressed in 24 tumor tissue types compared to normal tissue and was associated with four tumor stages. Survival analysis indicated that AIMP2 expression was strongly correlated with overall survival (OS) in certain cancer patients, with high AIMP2 expression linked to poorer prognosis in five cancer types. Conclusion: Finally, siRNA-mediated AIMP2 knockdown inhibited BRCA cell proliferation and migration in vitro. In conclusion, our pan-cancer analysis suggests that AIMP2 may play a crucial role in tumor immunity and could serve as a potential prognostic marker, particularly in BRCA.

8.
World J Surg Oncol ; 20(1): 326, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36175898

ABSTRACT

BACKGROUND: The data in the real-world setting on breast pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) for hormone receptor-positive, human epidermal growth factor receptor-2-negative (HR+, HER2-) breast cancer (BC) is limited. The present study aims to screen for some predictors and investigate the prognostic significance of breast pCR after NAC in HR+, HER2- BC in China. METHODS: This was a multicenter, retrospective study. In this study, three hundred eighty-four HR+, HER2- BC patients who received NAC were enrolled between 2010 and 2016 from Shanghai Jiaotong University Breast Cancer Database (SJTU-BCDB). These patients were dichotomized according to the presence of breast pCR after NAC. Logistic analysis was used to screen for predictors associated with breast pCR. Kaplan-Meier (K-M) curve and a propensity score matching (PSM) analysis were performed to compare the disease-free survival (DFS) between the two groups. Cox regression was used to analyze the prognostic significance of breast pCR on DFS in HR+, HER2- BC. A nomogram model was established to predict the probability of DFS at 1, 3, and 5 years after NAC. RESULTS: Fifty-seven patients (14.8%) achieved breast pCR. Univariate analysis showed that tumor size, estrogen receptor (ER), progesterone receptor (PR), and Ki67 were associated with breast pCR. Further, multivariate analysis showed that tumor size, PR, and Ki67 remained statistically significant. K-M curves showed a statistical difference between the breast pCR and non-pCR groups before PSM (p = 0.047), and a more significant difference was shown after PSM (p = 0.033). Cox regression after PSM suggested that breast pCR, adjuvant ET, clinical T stage, and Ki67 status were the significant predictive factors for DFS in HR+, HER2- BC patients. The adjusted hazards ratio (aHR) for breast pCR was 0.228 (95% CI, 0.070~0.739; p = 0.014), for adjuvant endocrine therapy was 0.217 (95% CI, 0.059~0.801; p = 0.022), for Ki67 was 1.027 (95% CI, 1.003~1.052; p = 0.027), for cT stages 2 and 3 compared with 1, the values were 1.331 (95% CI, 0.170~10.389), and 4.699 (95% CI, 0.537~41.142), respectively (p = 0.043). A nomogram was built based on these significant predictors, providing an integrated probability of DFS at 1, 3, and 5 years. The values of area under the receiver operating characteristic (ROC) curve (AUC) were 0.967, 0.991, and 0.787, at 1 year, 3 years, and 5 years, respectively, demonstrating the ability of the nomogram to predict the DFS. CONCLUSIONS: This real-world study demonstrates that tumor size, PR, and Ki67 were independent predictive factors for breast pCR in HR+, HER2- BC. Breast pCR after NAC was an independent predictor for DFS in HR+, HER2- patients, regardless of a change in nodes. Furthermore, the nomogram built in our study could predict the probability of individualized DFS in HR+, HER2- BC patients.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , Chemotherapy, Adjuvant , China/epidemiology , Disease-Free Survival , ErbB Receptors , Female , Humans , Ki-67 Antigen , Neoadjuvant Therapy , Receptor, ErbB-2/metabolism , Receptors, Estrogen , Receptors, Progesterone , Retrospective Studies , Triple Negative Breast Neoplasms/pathology
9.
Quant Imaging Med Surg ; 12(8): 4272-4285, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35919057

ABSTRACT

Background: Genetic susceptibility plays an important role in the pathogenesis of Parkinson's disease (PD). parkin S/N167 mutations may increase the risk of PD and affect white matter fibers in the brain. This cross-sectional study explored the effects of gene polymorphisms on white matter fiber damage in PD. Methods: In all, 54 cases were enrolled in the study, including PD patients carrying parkin gene S/N167 mutations (G/A), PD patients without gene S/N167 mutations (G/G), and healthy controls (HC). The whole-brain white matter fiber skeleton was analyzed using the tract-based spatial statistics (TBSS) method. Two-way analysis of variance (ANOVA) and post hoc tests were used for data analyses. Results: Two classification methods were used; one was based on disease classification, with 26 patients in the PD group (n=12 G/G, n=14 G/A) and 28 in the HC group (n=15 G/G, n=13 G/A), and the other was based on genetic classification, with 27 patients in the G/G group and 27 in the G/A group. In the G/A group, there was a wide range of significant changes in fractional anisotropy (FA), radial diffusivity (RD), and mean diffusivity (MD) values (P<0.05). There was also a significant decrease in FA in the PD-G/A group compared with the PD-G/G and HC-G/A groups (P<0.05). Conclusions: There were more extensive brain white matter fiber damage and changes in PD patients; the G/A polymorphism may cause more extensive brain white matter damage.

10.
PLoS One ; 15(12): e0243555, 2020.
Article in English | MEDLINE | ID: mdl-33301450

ABSTRACT

OBJECTIVE: To measure the situation of the non-prescription sale of antibiotics and the service quality of community pharmacies in Guangzhou, China. METHODS: A simulated client method was conducted to estimate the non-prescription sale of antibiotics and service quality based on scenarios about adult acute upper respiratory tract infection in 2019. A total of 595 community pharmacies from 11 districts were investigated in Guangzhou, China. We used binary logistic regression to evaluate the factors associated with the non-prescription sale of antibiotics. RESULTS: The proportion of non-prescription dispensing of antibiotics was 63.1% in Guangzhou, China, with a higher incidence of antibiotic dispensing without prescription in outer districts (69.3%). Cephalosporin (44.1%) and Amoxicillin (39.0%) were sold more often than other antibiotics. Chain pharmacies had better performance on the prescription sale of antibiotics and service quality. Traditional Chinese medicine was commonly recommended by pharmacy staff. CONCLUSION: Since the non-prescription sale of antibiotics is prevalent in Guangzhou, effective solutions should be determined. Strengthened public awareness and regulatory system innovation are needed.


Subject(s)
Anti-Bacterial Agents/economics , Community Pharmacy Services/trends , Pharmacies/trends , Amoxicillin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Cephalosporins/therapeutic use , China/epidemiology , Commerce , Community Pharmacy Services/economics , Health Services , Humans , Pharmacies/economics , Pharmacists/economics , Respiratory Tract Infections/drug therapy
11.
J Pharmacol Exp Ther ; 373(2): 290-301, 2020 05.
Article in English | MEDLINE | ID: mdl-32060048

ABSTRACT

Extensive studies have shown that the σ 1 receptor (σ 1R) interacts with and modulates the activity of multiple proteins with important biological functions. Recent crystal structures of σ 1R as a homotrimer differ from a dimer-tetramer model postulated earlier. It remains inconclusive whether ligand binding regulates σ 1R oligomerization. Here, novel nondenaturing gel methods and mutational analysis were used to examine σ 1R oligomerization. In transfected cells, σ 1R exhibited as multimers, dimers, and monomers. Overall, σ 1R agonists decreased, whereas σ 1R antagonists increased σ 1R multimers, suggesting that agonists and antagonists differentially affect the stability of σ 1R multimers. Endogenous σ 1R in rat liver membranes also showed similar regulation of oligomerization as in cells. Mutations at key residues lining the trimerization interface (Arg119, Asp195, Phe191, Trp136, and Gly91) abolished multimerization without disrupting dimerization. Intriguingly, truncation of the N terminus reduced σ 1R to apparent monomer. These results demonstrate that multiple domains play crucial roles in coordinating high-order quaternary organization of σ 1R. The E102Q σ 1R mutant implicated in juvenile amyotrophic lateral sclerosis formed dimers only, suggesting that dysregulation of σ 1R multimeric assembly may impair its function. Interestingly, oligomerization of σ 1R was pH-dependent and correlated with changes in [3H](+)-pentazocine binding affinity and Bmax Combined with mutational analysis, it is reasoned that σ 1R multimers possess high-affinity and high-capacity [3H](+)-pentazocine binding, whereas monomers likely lack binding. These results suggest that σ 1R may exist in interconvertible oligomeric states in a dynamic equilibrium. Further exploration of ligand-regulated σ 1R multimerization may provide novel approaches to modulate the function of σ 1R and its interacting proteins. SIGNIFICANCE STATEMENT: The σ 1 receptor (σ 1R) modulates the activities of various partner proteins. Recently, crystal structures of σ 1R were elucidated as homotrimers. This study used novel nondenaturing gel methods to examine σ1R oligomerization in transfected cells and rat liver membranes. Overall, agonist binding decreased, whereas antagonist binding increased σ 1R multimers, which comprised trimers and larger units. σ 1R multimers were shown to bind [3H](+)-pentazocine with high affinity and high capacity. Furthermore, mutational analysis revealed a crucial role of its N-terminal domain in σ 1R multimerization.


Subject(s)
Liver/metabolism , Protein Multimerization/drug effects , Receptors, sigma/drug effects , Animals , Female , HEK293 Cells , Humans , Male , Mutation , Pentazocine/metabolism , Rats , Rats, Sprague-Dawley , Receptors, sigma/chemistry , Receptors, sigma/genetics , Transfection , Sigma-1 Receptor
12.
Chem Commun (Camb) ; 55(6): 842-845, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30575824

ABSTRACT

We present the application of redundant modules in the molecular cascade circuit, which can help trace the results of each logic gate. This provides a basis for finding the error position and judging the final circuit result to improve the circuit and the reliability of the system.


Subject(s)
DNA/chemistry , Fuzzy Logic
13.
J Pharmacol Exp Ther ; 366(3): 527-540, 2018 09.
Article in English | MEDLINE | ID: mdl-29945932

ABSTRACT

Atypical dopamine transporter (DAT) inhibitors, despite high DAT affinity, do not produce the psychomotor stimulant and abuse profile of standard DAT inhibitors such as cocaine. Proposed contributing features for those differences include off-target actions, slow onsets of action, and ligand bias regarding DAT conformation. Several 3α-(4',4''-difluoro-diphenylmethoxy)tropanes were examined, including those with the following substitutions: N-(indole-3''-ethyl)- (GA1-69), N-(R)-2''-amino-3''-methyl-n-butyl- (GA2-50), N-2''aminoethyl- (GA2-99), and N-(cyclopropylmethyl)- (JHW013). These compounds were previously reported to have rapid onset of behavioral effects and were presently evaluated pharmacologically alone or in combination with cocaine. DAT conformational mode was assessed by substituted-cysteine accessibility and molecular dynamics (MD) simulations. As determined by substituted-cysteine alkylation, all BZT analogs except GA2-99 showed bias for a cytoplasmic-facing DAT conformation, whereas cocaine stabilized the extracellular-facing conformation. MD simulations suggested that several analog-DAT complexes formed stable R85-D476 "outer gate" bonds that close the DAT to extracellular space. GA2-99 diverged from this pattern, yet had effects similar to those of other atypical DAT inhibitors. Apparent DAT association rates of the BZT analogs in vivo were slower than that for cocaine. None of the compounds was self-administered or stimulated locomotion, and each blocked those effects of cocaine. The present findings provide more detail on ligand-induced DAT conformations and indicate that aspects of DAT conformation other than "open" versus "closed" may facilitate predictions of the actions of DAT inhibitors and may promote rational design of potential treatments for psychomotor-stimulant abuse.


Subject(s)
Behavior, Animal/drug effects , Benztropine/chemistry , Benztropine/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Nitrogen/chemistry , Animals , Dopamine Plasma Membrane Transport Proteins/chemistry , Male , Molecular Dynamics Simulation , Protein Conformation , Rats , Rats, Sprague-Dawley
14.
J Biol Chem ; 292(27): 11250-11261, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28495886

ABSTRACT

The dopamine transporter (DAT) regulates dopamine (DA) neurotransmission by recapturing DA into the presynaptic terminals and is a principal target of the psychostimulant cocaine. The sigma-1 receptor (σ1R) is a molecular chaperone, and its ligands have been shown to modulate DA neuronal signaling, although their effects on DAT activity are unclear. Here, we report that the prototypical σ1R agonist (+)-pentazocine potentiated the dose response of cocaine self-administration in rats, consistent with the effects of the σR agonists PRE-084 and DTG (1,3-di-o-tolylguanidine) reported previously. These behavioral effects appeared to be correlated with functional changes of DAT. Preincubation with (+)-pentazocine or PRE-084 increased the Bmax values of [3H]WIN35428 binding to DAT in rat striatal synaptosomes and transfected cells. A specific interaction between σ1R and DAT was detected by co-immunoprecipitation and bioluminescence resonance energy transfer assays. Mutational analyses indicated that the transmembrane domain of σ1R likely mediated this interaction. Furthermore, cysteine accessibility assays showed that σ1R agonist preincubation potentiated cocaine-induced changes in DAT conformation, which were blocked by the specific σ1R antagonist CM304. Moreover, σ1R ligands had distinct effects on σ1R multimerization. CM304 increased the proportion of multimeric σ1Rs, whereas (+)-pentazocine increased monomeric σ1Rs. Together these results support the hypothesis that σ1R agonists promote dissociation of σ1R multimers into monomers, which then interact with DAT to stabilize an outward-facing DAT conformation and enhance cocaine binding. We propose that this novel molecular mechanism underlies the behavioral potentiation of cocaine self-administration by σ1R agonists in animal models.


Subject(s)
Behavior, Animal/drug effects , Cocaine , Corpus Striatum , Dopamine Plasma Membrane Transport Proteins , Receptors, sigma , Synaptosomes , Animals , Cocaine/chemistry , Cocaine/pharmacokinetics , Cocaine/pharmacology , Corpus Striatum/chemistry , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Guanidines/chemistry , Guanidines/pharmacokinetics , Guanidines/pharmacology , Male , Morpholines/chemistry , Morpholines/pharmacokinetics , Morpholines/pharmacology , Protein Conformation , Rats , Rats, Sprague-Dawley , Receptors, sigma/chemistry , Receptors, sigma/metabolism , Synaptosomes/chemistry , Synaptosomes/metabolism
15.
J Pharmacol Exp Ther ; 362(1): 2-13, 2017 07.
Article in English | MEDLINE | ID: mdl-28442581

ABSTRACT

Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N-methyl (AHN1-055), N-allyl (AHN2-005), and N-butyl (JHW007) analogs of 3α-[bis(4'-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d-methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03-1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ1-receptor (σ1R) antagonists. Therefore, the present study examined binding of the BZT analogs to σRs, as well as their in vivo σR antagonist effects. Each of the BZT analogs displaced radiolabeled σR ligands with nanomolar affinity. Further, self-administration of the σR agonist DTG (0.1-3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D1-like [R(+)-SKF 81297, (±)-SKF 82958 (0.00032-0.01 mg/kg per injection each)], D2-like [R(-)-NPA (0.0001-0.0032 mg/kg per injection), (-)-quinpirole (0.0032-0.1 mg/kg per injection)], or µ-opioid (remifentanil, 0.0001-0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N-substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σR antagonism contributes to those actions.


Subject(s)
Benztropine/analogs & derivatives , Benztropine/pharmacology , Cocaine-Related Disorders/drug therapy , Receptors, sigma/drug effects , Animals , Brain Chemistry/drug effects , Cocaine/pharmacology , Cocaine-Related Disorders/psychology , Conditioning, Operant/drug effects , Dopamine Agents/pharmacology , Dose-Response Relationship, Drug , In Vitro Techniques , Male , Mice , Radioligand Assay , Rats , Rats, Sprague-Dawley , Self Administration , Sigma-1 Receptor
16.
Handb Exp Pharmacol ; 244: 177-218, 2017.
Article in English | MEDLINE | ID: mdl-28110353

ABSTRACT

Sigma receptors (σRs) are structurally unique proteins that function intracellularly as chaperones. Historically, σRs have been implicated as modulators of psychomotor stimulant effects and have at times been proposed as potential avenues for modifying stimulant abuse. However, the influence of ligands for σRs on the effects of stimulants, such as cocaine or methamphetamine, in various preclinical procedures related to drug abuse has been varied. The present paper reviews the effects of σR agonists and antagonists in three particularly relevant procedures: stimulant discrimination, place conditioning, and self-administration. The literature to date suggests limited σR involvement in the discriminative-stimulus effects of psychomotor stimulants, either with σR agonists substituting for the stimulant or with σR antagonists blocking stimulant effects. In contrast, studies of place conditioning suggest that administration of σR antagonists or down-regulation of σR protein can block the place conditioning induced by stimulants. Despite place conditioning results, selective σR antagonists are inactive in blocking the self-administration of stimulants. However, compounds binding to the dopamine transporter and blocking σRs can selectively decrease stimulant self-administration. Further, after self-administration of stimulants, σR agonists are self-administered, an effect not seen in subjects without that specific history. These findings suggest that stimulants induce unique changes in σR activity, and once established, the changes induced create redundant, and dopamine independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of those pathways, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse.


Subject(s)
Behavior, Addictive/psychology , Central Nervous System Stimulants/adverse effects , Central Nervous System/drug effects , Drug Users/psychology , Receptors, sigma/drug effects , Substance-Related Disorders/psychology , Animals , Behavior, Addictive/metabolism , Behavior, Addictive/physiopathology , Behavior, Animal/drug effects , Central Nervous System/metabolism , Central Nervous System/physiopathology , Discrimination, Psychological/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Receptors, sigma/metabolism , Reinforcement, Psychology , Self Administration , Signal Transduction , Substance-Related Disorders/metabolism , Substance-Related Disorders/physiopathology
17.
J Pharmacol Exp Ther ; 356(3): 624-34, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26769919

ABSTRACT

Previous structure-activity relationship studies indicate that a series of cocaine analogs, 3ß-aryltropanes with 2ß-diarylmethoxy substituents, selectively bind to the dopamine transporter (DAT) with nanomolar affinities that are 10-fold greater than the affinities of their corresponding 2α-enantiomers. The present study compared these compounds to cocaine with respect to locomotor effects in mice, and assessed their ability to substitute for cocaine (10 mg/kg, i.p.) in rats trained to discriminate cocaine from saline. Despite nanomolar DAT affinity, only the 2ß-Ph2COCH2-3ß-4-Cl-Ph analog fully substituted for cocaine-like discriminative effects. Whereas all of the 2ß compounds increased locomotion, only the 2ß-(4-ClPh)PhCOCH2-3ß-4-Cl-Ph analog had cocaine-like efficacy. None of the 2α-substituted compounds produced either of these cocaine-like effects. To explore the molecular mechanisms of these drugs, their effects on DAT conformation were probed using a cysteine-accessibility assay. Previous reports indicate that cocaine binds with substantially higher affinity to the DAT in its outward (extracellular)- compared with inward-facing conformation, whereas atypical DAT inhibitors, such as benztropine, have greater similarity in affinity to these conformations, and this is postulated to explain their divergent behavioral effects. All of the 2ß- and 2α-substituted compounds tested altered cysteine accessibility of DAT in a manner similar to cocaine. Furthermore, molecular dynamics of in silico inhibitor-DAT complexes suggested that the 2-substituted compounds reach equilibrium in the binding pocket in a cocaine-like fashion. These behavioral, biochemical, and computational results show that aryltropane analogs can bind to the DAT and stabilize outward-facing DAT conformations like cocaine, yet produce effects that differ from those of cocaine.


Subject(s)
Cocaine/analogs & derivatives , Cocaine/metabolism , Discrimination Learning/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Motor Activity/drug effects , Animals , Cocaine/pharmacology , Discrimination Learning/physiology , Dose-Response Relationship, Drug , Male , Mice , Motor Activity/physiology , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
18.
Behav Pharmacol ; 27(2-3 Spec Issue): 100-15, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26650253

ABSTRACT

Sigma-1 receptors (σ1Rs) are structurally unique intracellular proteins that function as chaperones. σ1Rs translocate from the mitochondria-associated membrane to other subcellular compartments, and can influence a host of targets, including ion channels, G-protein-coupled receptors, lipids, and other signaling proteins. Drugs binding to σRs can induce or block the actions of σRs. Studies indicate that stimulant self-administration induces the reinforcing effects of σR agonists, because of dopamine transporter actions. Once established, the reinforcing effects of σR agonists are independent of dopaminergic mechanisms traditionally thought to be critical to the reinforcing effects of stimulants. Self-administered doses of σR agonists do not increase dopamine concentrations in the nucleus accumbens shell, a transmitter and brain region considered important for the reinforcing effects of abused drugs. However, self-administration of σR agonists is blocked by σR antagonists. Several effects of stimulants have been blocked by σR antagonists, including the reinforcing effects, assessed by a place-conditioning procedure. However, the self-administration of stimulants is largely unaffected by σR antagonists, indicating fundamental differences in the mechanisms underlying these two procedures used to assess the reinforcing effects. When σR antagonists are administered in combination with dopamine uptake inhibitors, an effective and specific blockade of stimulant self-administration is obtained. Actions of stimulant drugs related to their abuse induce unique changes in σR activity and the changes induced potentially create redundant and, once established, independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of stimulant self-administration, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse.


Subject(s)
Central Nervous System Stimulants/administration & dosage , Receptors, sigma/agonists , Receptors, sigma/metabolism , Substance-Related Disorders/drug therapy , Animals , Central Nervous System Stimulants/adverse effects , Dopamine/metabolism , Humans , Receptors, sigma/genetics , Reinforcement, Psychology , Self Administration
19.
Drug Alcohol Depend ; 147: 1-19, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25548026

ABSTRACT

BACKGROUND: Treatment of stimulant-use disorders remains a formidable challenge, and the dopamine transporter (DAT) remains a potential target for antagonist or agonist-like substitution therapies. METHODS: This review focuses on DAT ligands, such as benztropine, GBR 12909, modafinil, and DAT substrates derived from phenethylamine or cathinone that have atypical DAT-inhibitor effects, either in vitro or in vivo. The compounds are described from a molecular mechanistic, behavioral, and medicinal-chemical perspective. RESULTS: Possible mechanisms for atypicality at the molecular level can be deduced from the conformational cycle for substrate translocation. For each conformation, a crystal structure of a bacterial homolog is available, with a possible role of cholesterol, which is also present in the crystal of Drosophila DAT. Although there is a direct relationship between behavioral potencies of most DAT inhibitors and their DAT affinities, a number of compounds bind to the DAT and inhibit dopamine uptake but do not share cocaine-like effects. Such atypical behavior, depending on the compound, may be related to slow DAT association, combined sigma-receptor actions, or bias for cytosol-facing DAT. Some structures are sterically small enough to serve as DAT substrates but large enough to also inhibit transport. Such compounds may display partial DA releasing effects, and may be combined with release or uptake inhibition at other monoamine transporters. CONCLUSIONS: Mechanisms of atypical DAT inhibitors may serve as targets for the development of treatments for stimulant abuse. These mechanisms are novel and their further exploration may produce compounds with unique therapeutic potential as treatments for stimulant abuse.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Drug Delivery Systems , Animals , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/pharmacology , Benztropine/metabolism , Benztropine/pharmacology , Central Nervous System Stimulants/metabolism , Central Nervous System Stimulants/pharmacology , Cocaine/pharmacology , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Drug Delivery Systems/methods , Humans , Ligands , Modafinil , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary
20.
J Pharmacol Exp Ther ; 349(2): 297-309, 2014 May.
Article in English | MEDLINE | ID: mdl-24518035

ABSTRACT

The present study examined RTI-371 [3ß-(4-methylphenyl)-2ß-[3-(4-chlorophenyl)-isoxazol-5-yl]tropane], a phenyltropane cocaine analog with effects distinct from cocaine, and assessed potential mechanisms for those effects by comparison with its constitutional isomer, RTI-336 [3ß-(4-chlorophenyl)-2ß-[3-(4-methylphenyl)-isoxazol-5-yl]tropane]. In mice, RTI-371 was less effective than cocaine and RTI-336 in stimulating locomotion, and incompletely substituted (∼60% maximum at 5 minutes or 1 hour after injection) in a cocaine (10 mg/kg i.p.)/saline discrimination procedure; RTI-336 completely substituted. In contrast to RTI-336, RTI-371 was not self-administered, and its pretreatment (1.0-10 mg/kg i.p.) dose-dependently decreased maximal cocaine self-administration more potently than food-maintained responding. RTI-336 pretreatment dose-dependently left-shifted the cocaine self-administration dose-effect curve. Both RTI-336 and RTI-371 displaced [(3)H]WIN35,428 [[(3)H](-)-3ß-(4-fluorophenyl)-tropan-2ß-carboxylic acid methyl ester tartrate] binding to striatal dopamine transporters (DATs) with Ki values of 10.8 and 7.81 nM, respectively, and had lower affinities at serotonin or norepinephrine transporters, or muscarinic and σ receptors. The relative low affinity at these sites suggests the DAT as the primary target of RTI-371 with minimal contributions from these other targets. In biochemical assays probing the outward-facing DAT conformation, both RTI-371 and RTI-336 had effects similar to cocaine, suggesting little contribution of DAT conformation to the unique pharmacology of RTI-371. The locomotor-stimulant effects of RTI-371 (3.0-30 mg/kg i.p.) were comparable in wild-type and knockout cannabinoid CB1 receptor (CB1R) mice, indicating that previously reported CB1 allosteric effects do not decrease cocaine-like effects of RTI-371. DAT occupancy in vivo was most rapid with cocaine and least with RTI-371. The slow apparent association rate may allow compensatory actions that in turn dampen cocaine-like stimulation, and give RTI-371 its unique pharmacologic profile.


Subject(s)
Cocaine/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Isoxazoles/pharmacology , Tropanes/pharmacology , Animals , Cocaine/administration & dosage , Corpus Striatum/metabolism , Discrimination, Psychological , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Mutant Strains , Models, Molecular , Motor Activity/drug effects , Protein Conformation , Radioligand Assay , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/genetics , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...