Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(16): 167201, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36306770

ABSTRACT

The everlasting interest in spin chains is mostly rooted in the fact that they generally allow for comparisons between theory and experiment with remarkable accuracy, especially for exactly solvable models. A notable example is the spin-1/2 antiferromagnetic Heisenberg chain (AFHC), which can be well described by the Tomonaga-Luttinger liquid theory and exhibits fractionalized spinon excitations with distinct thermodynamic and spectroscopic experimental signatures consistent with theoretical predictions. A missing piece, however, is the lack of a comprehensive understanding of the spinon heat transport in AFHC systems, due to difficulties in its experimental evaluation against the backdrop of other heat carriers and complex scattering processes. Here we address this situation by performing ultralow-temperature thermal conductivity measurements on a nearly ideal spin-1/2 AFHC system copper benzoate Cu(C_{6}H_{5}COO)_{2}·3H_{2}O, whose field-dependent spin excitation gap enables a reliable extraction of the spinon thermal conductivity κ_{s} at zero field. κ_{s} was found to exhibit a linear temperature dependence κ_{s}∼T at low temperatures, with κ_{s}/T as large as 1.70 mW cm^{-1} K^{-2}, followed by a precipitate decline below ∼0.3 K. The observed κ_{s}∼T clarifies the discrepancies between various spin chain systems and serves as a benchmark for one-dimensional spinon heat transport in the low-temperature limit. The abrupt loss of κ_{s} with no corresponding anomaly in the specific heat is discussed in the context of many-body localization.

2.
Phys Rev Lett ; 117(26): 267202, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-28059548

ABSTRACT

We present the ultralow-temperature specific heat and thermal conductivity measurements on single crystals of YbMgGaO_{4}, which was recently argued to be a promising candidate for a quantum spin liquid (QSL). In a zero magnetic field, a large magnetic contribution of specific heat is observed, and exhibits a power-law temperature dependence (C_{m}∼T^{0.74}). On the contrary, we do not observe any significant contribution of thermal conductivity from magnetic excitations. In magnetic fields H≥6 T, the exponential T dependence of C_{m} and the enhanced thermal conductivity indicate a magnon gap of the fully polarized state. The absence of magnetic thermal conductivity at the zero field in this QSL candidate puts a strong constraint on the theories of its ground state.

3.
Phys Rev Lett ; 115(5): 057202, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26274436

ABSTRACT

The quantum oscillations of the magnetoresistance under ambient and high pressure have been studied for WTe2 single crystals, in which extremely large magnetoresistance was discovered recently. By analyzing the Shubnikov-de Haas oscillations, four Fermi surfaces are identified, and two of them are found to persist to high pressure. The sizes of these two pockets are comparable, but show increasing difference with pressure. At 0.3 K and in 14.5 T, the magnetoresistance decreases drastically from 1.25×10(5)% under ambient pressure to 7.47×10(3)% under 23.6 kbar, which is likely caused by the relative change of Fermi surfaces. These results support the scenario that the perfect balance between the electron and hole populations is the origin of the extremely large magnetoresistance in WTe2.

4.
Phys Rev Lett ; 113(24): 246402, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25541783

ABSTRACT

We report the quantum transport properties of Cd3As2 single crystals in a magnetic field. A large linear quantum magnetoresistance is observed near room temperature. With decreasing temperature, the Shubnikov-de Haas oscillations appear in both the longitudinal resistance R(xx) and the transverse Hall resistance R(xy). From the strong oscillatory component ΔR(xx), a linear dependence of the Landau index n on 1/B is obtained, and it gives an n-axis intercept between 1/2 and 5/8. This clearly reveals a nontrivial π Berry's phase, which is a distinguished feature of Dirac fermions. Our quantum transport results provide bulk evidence for the existence of a three-dimensional Dirac semimetal phase in Cd3As2.

SELECTION OF CITATIONS
SEARCH DETAIL
...