Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Front Cell Dev Biol ; 11: 1171637, 2023.
Article in English | MEDLINE | ID: mdl-37215091

ABSTRACT

Protein reabsorption in renal proximal tubules is essential for maintaining nutrient homeostasis. Renal proximal tubule-specific gene knockout is a powerful method to assess the function of genes involved in renal proximal tubule protein reabsorption. However, the lack of inducible renal proximal tubule-specific Cre recombinase-expressing mouse strains hinders the study of gene function in renal proximal tubules. To facilitate the functional study of genes in renal proximal tubules, we developed an AMN CreERT2 knock-in mouse strain expressing a Cre recombinase-estrogen receptor fusion protein under the control of the promoter of the amnionless (AMN) gene, a protein reabsorption receptor in renal proximal tubules. AMN CreERT2 knock-in mice were generated using the CRISPR/Cas9 strategy, and the tissue specificity of Cre activity was investigated using the Cre/loxP reporter system. We showed that the expression pattern of CreERT2-mEGFP in AMN CreERT2 mice was consistent with that of the endogenous AMN gene. Furthermore, we showed that the Cre activity in AMN CreERT2 knock-in mice was only detected in renal proximal tubules with high tamoxifen induction efficiency. As a proof-of-principle study, we demonstrated that renal proximal tubule-specific knockout of Exoc4 using AMNCreERT2 led to albumin accumulation in renal proximal tubular epithelial cells. The AMN CreERT2 mouse is a powerful tool for conditional gene knockout in renal proximal tubules and should offer useful insight into the physiological function of genes expressed in renal proximal tubules.

3.
Theranostics ; 13(4): 1311-1324, 2023.
Article in English | MEDLINE | ID: mdl-36923529

ABSTRACT

Rationale: Mammalian renal proximal tubules can partially regenerate after acute kidney injury (AKI). However, cells participating in the renal proximal tubule regeneration remain to be elucidated. Wilms' tumor 1 (WT1) expresses in a subtype of glomeruli parietal epithelial cells (PECs) in adult kidneys, it remains unclear whether these WT1+ PECs play a role in renal regeneration/repair after AKI. Methods: Ischemia-reperfusion injury (IRI) mouse model was used to investigate the expression pattern of WT1 in the kidney after severe AKI. Conditional deletion of WT1 gene mice were generated using Pax8CreERT2 and WT1fl/fl mice to examine the function of WT1. Then, genetic cell lineage tracing and single-cell RNA sequencing were performed to illustrate that WT1+ PECs develop into WT1+ proximal tubular epithelial cells (PTECs). Furthermore, in vitro clonogenicity, direct differentiation analysis and in vivo transplantation were used to reveal the stem cell-like properties of these WT1+ PECs. Results: The expression of WT1 protein in PECs and PTECs was increased after severe AKI. Conditional deletion of WT1 gene in PTECs and PECs aggravated renal tubular injury after severe AKI. WT1+ PECs develop into WT1+ PTECs via the transient scattered tubular cell stage, and these WT1+ PECs possess specific stem cell-like properties. Conclusions: We discovered a group of WT1+ PECs that promote renal proximal tubule regeneration/repair after severe AKI, and the expression of WT1 in PECs and PTECs is essential for renal proximal tubule regeneration after severe kidney injury.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Mice , Animals , Kidney Tubules/pathology , Kidney/pathology , Kidney Tubules, Proximal/metabolism , Acute Kidney Injury/metabolism , Cell Differentiation , Epithelial Cells/metabolism , Reperfusion Injury/metabolism , Mammals , WT1 Proteins/genetics , WT1 Proteins/metabolism
4.
Dis Model Mech ; 14(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34437681

ABSTRACT

Aging is a multifaceted process regulated by multiple cellular pathways, including the proteostasis network. Pharmacological or genetic enhancement of the intracellular proteostasis network extends lifespan and prevents age-related diseases. However, how proteostasis is regulated in different tissues throughout the aging process remains unclear. Here, we show that Drosophila homologs of Cubilin- and Amnionless (dCubilin and dAMN, respectively)-mediated protein reabsorption (CAMPR) from hemolymph insect blood by nephrocytes modulate longevity through regulating proteostasis in muscle and brain tissues. We find that overexpression of dAMN receptor in nephrocytes extends lifespan, whereas nephrocyte-specific dCubilin or dAMN RNAi knockdown shortens lifespan. We also show that CAMPR in nephrocytes regulates proteostasis in hemolymph and improves healthspan. In addition, we show that enhanced CAMPR in nephrocytes slows down the aging process in muscle and brain by maintaining the proteostasis network in these tissues. Altogether, our work has revealed an inter-organ communication network across nephrocytes and muscle/neuronal tissue that is essential for maintaining proteostasis, and to delay senescence in these organs. These findings provide insight into the role of renal protein reabsorption in the aging process via this tele-proteostasis network.


Subject(s)
Drosophila Proteins , Drosophila , Aging/metabolism , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Longevity , Proteostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...