Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36433528

ABSTRACT

In the mixed reality (MR) environment, the task of target motion perception is usually undertaken by vision. This approach suffers from poor discrimination and high cognitive load when the tasks are complex. This cannot meet the needs of the air traffic control field for rapid capture and precise positioning of the dynamic targets in the air. Based on this problem, we conducted a multimodal optimization study on target motion perception judgment by controlling the hand tactile sensor to achieve the use of tactile sensation to assist vision in MR environment. This allows it to adapt to the requirements of future development-led interactive tasks under the mixed reality holographic aviation tower. Motion perception tasks are usually divided into urgency sensing for multiple targets and precise position tracking for single targets according to the number of targets and task division. Therefore, in this paper, we designed experiments to investigate the correlation between tactile intensity-velocity correspondence and target urgency, and the correlation between the PRS (position, rhythm, sequence) tactile indication scheme and position tracking. We also evaluated it through comprehensive experiment. We obtained the following conclusions: (1) high, higher, medium, lower, and low tactile intensities would bias human visual cognitive induction to fast, faster, medium, slower, and slow motion targets. Additionally, this correspondence can significantly improve the efficiency of the participants' judgment of target urgency; (2) under the PRS tactile indication scheme, position-based rhythm and sequence cues can improve the judgment effect of human tracking target dynamic position, and the effect of adding rhythm cues is better. However, when adding rhythm and sequence cues at the same time, it can cause clutter; (3) tactile assisted vision has a good improvement effect on the comprehensive perception of dynamic target movement. The above findings are useful for the study of target motion perception in MR environments and provide a theoretical basis for subsequent research on the cognitive mechanism and quantitative of tactile indication in MR environment.


Subject(s)
Augmented Reality , Motion Perception , Touch Perception , Humans , Touch , Vision, Ocular
2.
Brain Sci ; 12(8)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35892412

ABSTRACT

After the command and control information of the command and control cabin is displayed in the form of mixed reality, the large amount of real-time information and static information contained in it will form a dynamic situation that changes all the time. This brings a great burden to the system operator's cognition, decision-making and operation. In order to solve this problem, this paper studies the three-dimensional spatial layout of holographic command cabin information display in a mixed reality environment. A total of 15 people participated in the experiment, of which 10 were the subjects of the experiment and 5 were the staff of the auxiliary experiment. Ten subjects used the HoloLens 2 generation to conduct visual characteristics and cognitive load experiments and collected and analyzed the subjects' task completion time, error rate, eye movement and EEG and subjective evaluation data. Through the analysis of experimental data, the laws of visual and cognitive features of three-dimensional space in a mixed reality environment can be obtained. This paper systematically explores the effects of three key attributes: depth distance, information layer number and target relative position depth distance of information distribution in a 3D space, on visual search performance and on cognitive load. The experimental results showed that the optimal depth distance range for information display in the mixed reality environment is: the best depth distance for operation interactions (0.6 m~1.0 m), the best depth distance for accurate identification (2.4 m~2.8 m) and the overall situational awareness best-in-class depth distance (3.4 m~3.6 m). Under a certain angle of view, the number of information layers in the space is as small as possible, and the number of information layers should not exceed five at most. The relative position depth distance between the information layers in space ranges from 0.2 m to 0.35 m. Based on this theory, information layout in a 3D space can achieve a faster and more accurate visual search in a mixed reality environment and effectively reduce the cognitive load.

SELECTION OF CITATIONS
SEARCH DETAIL
...