Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 669: 657-666, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38733877

ABSTRACT

Creating a microenvironment for enhanced peroxymonosulfate (PMS) activation is vital in advanced oxidation processes. The objective of this study was to fabricate nanoshells composed of titanium dioxide embedded with cobalt titanate nanoparticles of perovskite to act as nanoreactors for effectively initiating PMS and degrading contaminants. The unique porous structure and confined space of the nanoreactor facilitated reactant absorption and mass transfer to the active sites, resulting in exceptional catalytic performance for pollutant elimination. Experimental findings revealed close to 100% decomposition efficiency of 4-chlorophenol (4-CP) within an hour utilizing the nanoreactors over a wide pH range. The TiO2/CoTiO3 hollow nanoshells catalysts also displayed adaptability in disintegrating organic dyes and antibiotics. The radicals SO4•-, •OH, and non-radicals 1O2 were determined to be accountable for eliminating pollutants, as supported by trapping experiments and electron paramagnetic resonance spectra. The catalyst was confirmed as an electron donor and PMS as an electron acceptor through electrochemical tests and density functional theory calculations. This study underscores the potential of incorporating stable perovskite catalysts in hollow nanoreactors to enhance wastewater treatment.

2.
Small ; 19(45): e2303960, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37415532

ABSTRACT

Electron density manipulation of active sites in cocatalysts is of great essential to realize the optimal hydrogen adsorption/desorption behavior for constructing high-efficient H2 -evolution photocatalyst. Herein, a strategy about weakening metal-metal bond strength to directionally optimize the electron density of channel-sulfur(S) sites in 1T' Re1- x Mox S2 cocatalyst is clarified to improve their hydrogen adsorption strength (S─H bond) for rapid H2 -production reaction. In this case, the ultrathin Re1- x Mox S2 nanosheet is in situ anchored on the TiO2 surface to form Re1- x Mox S2 /TiO2 photocatalyst by a facial molten salt method. Remarkably, numerous visual H2 bubbles are constantly generated on the optimal Re0.92 Mo0.08 S2 /TiO2 sample with a 10.56 mmol g-1  h-1 rate (apparent quantum efficiency is about 50.6%), which is 2.6 times higher than that of traditional ReS2 /TiO2 sample. Density functional theory and in situ/ex situ X-ray photoelectron spectroscopy results collectively demonstrate that the weakened Re─Re bond strength via Mo introduction can induce the formation of unique electron-deficient channel-S sites with suitable electron density, which yield thermoneutral S─H bonds to realize superior interfacial H2 -generation performance. This work provides fundamental guidance on purposely optimizing the electronic state of active sites by manipulating the intrinsic bonding structure, which opens an avenue for designing efficacious photocatalytic materials.

3.
ACS Appl Mater Interfaces ; 13(43): 51198-51204, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34672525

ABSTRACT

A PbSe colloidal quantum dot (QD) is typically a solution-processed semiconductor for near-infrared (NIR) optoelectronic applications. However, the wide application of PbSe QDs has been restricted due to their instability, which requires tedious synthesis and complicated treatments before being applied in devices. Here, we demonstrate efficient NIR photodetectors based on the room-temperature, direct synthesis of semiconducting PbSe QD inks. The in-situ passivation and the avoidance of ligand exchange endow PbSe QD photodetectors with high efficiency and low cost. By further constructing the PbSe QDs/ZnO heterostructure, the photodetectors exhibit the NIR responsivity up to 970 mA/W and a detectivity of 1.86 × 1011 Jones at 808 nm. The obtained performance is comparable to that of the state-of-the-art PbSe QD photodetectors using a complex ligand exchange strategy. Our work may pave a new way for fabricating efficient and low-cost colloidal QD photodetectors.

4.
Nanomaterials (Basel) ; 11(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34578590

ABSTRACT

The phase transition, microscopic morphology and optical and ferroelectric properties are studied in a series of La- and Co-doped KNbO3-based ceramics. The results show that the doping induces the transformation from the orthorhombic to the cubic phase of KNbO3, significantly reduces the optical bandgap and simultaneously evidently improves the leakage, with a slight weakening of ferroelectric polarization. Further analysis reveals that (i) the Co doping is responsible for the obvious reduction of the bandgap, whereas it is reversed for the La doping; (ii) the slight deterioration of ferroelectricity is due to the doping-induced remarkable extrinsic defect levels and intrinsic oxygen vacancies; and (iii) the La doping can optimize the defect levels and inhibit the leakage. This investigation should both provide novel insight for exploring the bandgap engineering and ferroelectric properties of KNbO3, and suggest its potential applications, e.g., photovoltaic and multifunctional materials.

5.
J Colloid Interface Sci ; 586: 719-729, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33228958

ABSTRACT

The preparation of nanoscale molybdenum sulfide (MoS2)-modified graphitic carbon nitride (g-C3N4) nanosheets usually contains complex and multiple-step operations, including the separate synthesis of nanoscale MoS2 and g-C3N4 nanosheet, and their subsequent composite process. To effectively overcome the above drawbacks, herein, a facile one-step trifunctional ammonium tetrathiomolybdate ((NH4)2MoS4)-assisted approach has been designed to produce ultra-small MoSx nanodot-coupled g-C3N4 nanosheet photocatalyst, including the first addition of ammonium chloride (NH4Cl) and (NH4)2MoS4 into melamine precursors and their following one-step calcination. During high-temperature calcination, except for the promoting generation of the g-C3N4 nanosheets by produced ammonia (NH3) and hydrogen sulfide (H2S) gases, the above (NH4)2MoS4 decomposition not only can efficiently clip the s-heptazine framework to produce more terminal amino groups and cyano groups, but also can produce ultra-small MoSx nanodots on the resultant g-C3N4 nanosheet surface, resulting in the final production of ultra-small MoSx nanodot-coupled g-C3N4 nanosheets. The resultant MoSx nanodot-coupled g-C3N4 nanosheets evidently exhibit increased photocatalytic hydrogen (H2)-generation rate, about 8-fold increase to the traditional MoS2-modified g-C3N4 photocatalyst. The increased H2-generation rate can be mainly attributed to the synergism of MoSx nanodots and cyano group on the g-C3N4 nanosheet surface. The current facile technology could open the sights for the preparation of other high-efficiency photocatalysts.

6.
Nanoscale Res Lett ; 15(1): 213, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33180221

ABSTRACT

Perovskite solar cells are used in silicon-based tandem solar cells due to their tunable band gap, high absorption coefficient and low preparation cost. However, the relatively large optical refractive index of bottom silicon, in comparison with that of top perovskite absorber layers, results in significant reflection losses in two-terminal devices. Therefore, light management is crucial to improve photocurrent absorption in the Si bottom cell. In this paper, nanoholes array filled with TiO2 is introduced into bottom cells design. By finite-difference time-domain methods, the absorption efficiency and photocurrent density in the range of 300-1100 nm has been analyzed, and the structural parameters have been also optimized. Our calculations show the photocurrent density which tends to be saturated with the increase in the height of the nanoholes. The absorption enhancement modes of photons at different wavelengths have been analyzed intuitively by the distribution of electric field. These results enable a viable and convenient route toward high efficiency design of perovskite/Si tandem solar cells.

7.
Chemosphere ; 261: 127759, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32731028

ABSTRACT

Considerable effort has been devoted to the efficient degradation of pharmaceuticals and personal care products (PPCPs), while the chemical energy in these processes has been widely overlooked. In this study, we demonstrated the simultaneous hydrogen production and ibuprofen degradation through heterogeneous photocatalysis. By anchoring Au nanoparticles (NPs) on the (101) surface of sheaf-like TiO2 mesocrystals with [001] orientation, efficient charge separation is achieved, which is essential for the photocatalytic redox reactions. XPS analysis showed that the binding energies of Ti 2p and O 1s indicated no shift after Au addition. Peaks observed at 81.8 and 85.5 eV due to Au 4f7/2 and Au 4f5/2 of metallic gold on the surface of Au/meso-TiO2, confirmed the formation of Au NPs. The as-synthesized anatase TiO2 mesocrystals are composed of small nanocrystals with a size of 8 nm and exhibit the uniform sheaf-like morphology along [001] orientation. As expected, the 1 wt% Au/TiO2 mesocrystals shows the largest photocurrent density, highest H2-evolution rate, and fastest photodegradation rate of ibuprofen under simulated sunlight irradiation among all the studied catalyst. Furthermore, the effect of solution pH, common anions (Cl-, NO3-, and SO42-) and cations (Na+, K+, and Ca2+) on photocatalytic H2 evolution and degradation of ibuprofen were individually investigated and discussed. A mechanism for the simultaneous photocatalytic hydrogen generation and degradation of ibuprofen has also been proposed. This work opens up new opportunities for the development of energy efficient techniques for PPCPs degradation.


Subject(s)
Gold/chemistry , Hydrogen/analysis , Ibuprofen/analysis , Metal Nanoparticles/chemistry , Sunlight , Titanium/chemistry , Water Pollutants, Chemical/analysis , Catalysis , Models, Theoretical , Particle Size , Photolysis , Surface Properties
8.
J Colloid Interface Sci ; 570: 232-241, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32155501

ABSTRACT

Constructing Z-scheme photocatalysts is one of the most effective technologies to enhance the photocatalytic reduction or oxidation ability in artificial photosynthesis. For the BiVO4 photocatalyst, it usually shows limited photocatalytic ability because of the severe bulk recombination of photogenerated carriers and the poor reduction reaction of photogenerated electrons. In this paper, a novel plasmonic Z-scheme Pt-Au/BiVO4 single-crystal photocatalyst was constructed to solve the above issues. Here, Au nanoparticles are selectively deposited on the electron-rich (0 1 0) facet of BiVO4, while Pt nanoparticles are selectively modified on the Au surface. Photocatalytic results indicated that the resultant Pt-Au/BiVO4 Z-scheme photocatalyst exhibits an obviously higher photocatalytic performance than pure BiVO4, Au/BiVO4, randomly deposited BiVO4(Pt-Au/BiVO4(R)) and conventional Pt-Au/BiVO4. More importantly, compared with the well-known Pt/BiVO4(2.0 wt%), the Pt-Au/BiVO4 not only exhibits a higher photocatalytic performance, but also loads a lower amount of high-cost Pt cocatalyst. The excellent photocatalytic activity of the plasmonic Z-scheme Pt-Au/BiVO4 photocatalyst can be attributed to the synergistic effect of crystal-facet engineering and selective loading of Pt-Au, which results in the orientation transfer of photogenerated carriers in the single-crystal BiVO4, the enhanced reduction power of photogenerated electrons, and the rapid oxygen-reduction reaction on Pt cocatalyst.

9.
J Chem Phys ; 142(2): 024706, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25591376

ABSTRACT

Ab initio calculations combining density-functional theory and nonequilibrium Green's function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the high bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...