Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Microsc Microanal ; 27(1): 129-139, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33303043

ABSTRACT

One of the primary uses for transmission electron microscopy (TEM) is to measure diffraction pattern images in order to determine a crystal structure and orientation. In nanobeam electron diffraction (NBED), we scan a moderately converged electron probe over the sample to acquire thousands or even millions of sequential diffraction images, a technique that is especially appropriate for polycrystalline samples. However, due to the large Ewald sphere of TEM, excitation of Bragg peaks can be extremely sensitive to sample tilt, varying strongly for even a few degrees of sample tilt for crystalline samples. In this paper, we present multibeam electron diffraction (MBED), where multiple probe-forming apertures are used to create multiple scanning transmission electron microscopy (STEM) probes, all of which interact with the sample simultaneously. We detail designs for MBED experiments, and a method for using a focused ion beam to produce MBED apertures. We show the efficacy of the MBED technique for crystalline orientation mapping using both simulations and proof-of-principle experiments. We also show how the angular information in MBED can be used to perform 3D tomographic reconstruction of samples without needing to tilt or scan the sample multiple times. Finally, we also discuss future opportunities for the MBED method.

2.
Opt Express ; 28(26): 39241-39249, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379478

ABSTRACT

In the second-harmonic generation processes involving Laguerre-Gaussian (LG) beams, the generated second-harmonic wave is generally composed of multiple modes with different radial quantum numbers. To generate single-mode second-harmonic LG beams, a type of improved quasi-phase-matching method is proposed. The Gouy phase shift has been considered in the optical superlattice designing and an adjustment phase item is introduced. By changing the structure parameters, each target mode can be phase-matched selectively, whose purity can reach up to 95%. The single LG mode generated from the optical superlattice can be modulated separately and used as the input signals in the mode division multiplexing system.

3.
Phys Rev Lett ; 120(6): 067601, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481224

ABSTRACT

Second-harmonic generation is used experimentally for the nonlinear imaging of two-dimensional irregular domain structures. Analytical solutions and simulation results for the Fresnel distribution of domain walls are obtained. The results show that the domain wall plays an important role in the imaging process and the corresponding diffraction effect is greatly suppressed (we call it a nearly diffraction-free effect), thus providing a simple way to realize high-resolution imaging for ferroelectric domains.

4.
ACS Nano ; 12(1): 662-670, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29271636

ABSTRACT

Adjuvant treatments following breast-conserving surgery (BCS) are essential to reduce the risk of local recurrences in patients with breast cancer. However, current adjuvant treatments are based on ionizing radiation, which brings radiation-induced damage and amplifies the risk of death. Here we explore the feasibility of using non-ionizing light to induce photothermal therapy as an adjuvant treatment to BCS. In an orthotopic breast cancer mice model, we demonstrate that adjuvant photothermal therapy (aPTT) decreases the incidence of local recurrences after BCS with no expense of cosmetic outcome. In comparison with conventional photothermal therapy, the technique used in aPTT provides more uniformly distributed light energy and less risk of skin burns and local recurrences. Overall, this work represents a departure from the traditional concept of using PTT as an alternative to surgery and reveals the potential of using PTT as an alternative to adjuvant radiation therapy, which is valuable especially for patients susceptible to radiation damage.


Subject(s)
Breast Neoplasms/surgery , Breast Neoplasms/therapy , Neoplasm Recurrence, Local/prevention & control , Animals , Cell Line, Tumor , Combined Modality Therapy/methods , Female , Humans , Hyperthermia, Induced/methods , Mastectomy, Segmental/methods , Mice, Nude , Phototherapy/methods , Treatment Outcome
5.
Opt Express ; 25(21): 25646-25654, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041229

ABSTRACT

The time-reversed second-harmonic generation in one-dimensional nonlinear photonic crystals has been theoretically studied without the undepleted pump approximation. A simple criterion has been deduced which determines the energy flow. Based on it, two kinds of structures with different symmetries are presented to realize the nonlinear time reversal effect. A completely reciprocal nonlinear response is also found in the same process. Furthermore, a multi-section-cascaded structure is proposed to realize the nonlinear time reversal at any given position.

6.
Sci Rep ; 7(1): 6579, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28747654

ABSTRACT

The nonreciprocal response of the SHG process in 1D periodical nonlinear photonic crystals with a defect embedded has been theoretically studied by solving the nonlinear coupled equations. The nonreciprocal response has been deduced analytically with the solution of non-reciprocity parameters obtained. The result shows that as the non-reciprocity approaches 100%, the crystal length and the input power needed increase at a logarithmic rate. Any target nonreciprocal response can be reached in this structure by adjusting the structure parameters.

7.
Sci Adv ; 3(5): e1602427, 2017 May.
Article in English | MEDLINE | ID: mdl-28508061

ABSTRACT

Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO2, LiMn2O4, and Al-doped LiCoO2. The crystallinities and electrochemical capacities of the electroplated oxides are comparable to those of the powders synthesized at much higher temperatures (700° to 1000°C). This new growth method significantly broadens the scope of battery form factors and functionalities, enabling a variety of highly desirable battery properties, including high energy, high power, and unprecedented electrode flexibility.

8.
Opt Express ; 24(11): 11539-45, 2016 May 30.
Article in English | MEDLINE | ID: mdl-27410081

ABSTRACT

In this paper, the Cerenkov-type second-harmonic generation in bulk optical superlattices has been studied theoretically with the non-paraxial wave equations, where the paraxial approximation is avoided. The corresponding phase-matching condition is determined strictly by solving the non-paraxial wave equations under proper boundary conditions, and the result coincides well with the traditional Cerenkov phase-matching condition. In addition, a backward Cerenkov phase-matching condition is deduced from the wave equations as well, and the physical requirement of this condition is clarified.

9.
Opt Lett ; 41(13): 2927-9, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27367067

ABSTRACT

Nonlinear volume holography is employed to realize arbitrary wave-front shaping during nonlinear processes with properly designed 2D optical superlattices. The concept of a nonlinear polarization wave in nonlinear volume holography is investigated. The holographic imaging of irregular patterns was performed using 2D LiTaO3 crystals with fundamental wave propagating along the spontaneous polarization direction, and the results agree well with the theoretical predictions. This Letter not only extends the application area of optical superlattices, but also offers an efficient method for wave-front shaping technology.

10.
Sci Rep ; 6: 29365, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27386951

ABSTRACT

Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model.

11.
Sci Rep ; 6: 27457, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27272308

ABSTRACT

A simple method is employed to investigate the nonlinear frequency conversion in optical superlattices (OSL) with pump depletion. Four rigorous phase-matching conditions for different purposes are obtained directly from the nonlinear coupled equations, and the resulting OSL domain structures are generally aperiodic rather than periodic. With this method, not only the intensity but also the phase-shift of the harmonic waves can be manipulated at will. The second-harmonic generation of Gaussian beam is further investigated. This work may provide a guidance for the practical applications of designing nonlinear optical devices with high conversion efficiency.

12.
Opt Lett ; 40(13): 3217-20, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26125406

ABSTRACT

We present an ultra-compact spectrometer that uses a 10×10 hole array as the dispersive component. Our analysis shows that the two-dimensional intensity distribution can be modeled by a system of simultaneous linear equations when the size of each hole in the dispersive component has been pre-designed appropriately. One can readily recover the spectral contents of the input radiation by solving the linear equation system with regularized procedure. Experimental results show that the reconstruction range is at least within the entire visible band, which can be further extended if a near-infrared CCD is used. One therefore envisions strong potential for many wavelength analysis applications.


Subject(s)
Optical Phenomena , Spectrum Analysis/instrumentation , Calibration
13.
Opt Express ; 23(14): 18310-5, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26191887

ABSTRACT

We proposed a simple method to realize optical Fourier transform during the nonlinear wave shaping processes. In this method, an integrated optical superlattice is designed to realize multiple optical functions, which plays important roles in both the nonlinear harmonic generation process and the optical Fourier Transform process. We demonstrated our method by the nonlinear generation of Airy beams as an example. It is a universal method for beam shaping and is of practical importance for designing compact nonlinear optical devices.

14.
Phys Rev Lett ; 113(16): 163902, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25361260

ABSTRACT

The concept of volume holography is applied to the design of an optical superlattice for the nonlinear harmonic generation. The generated harmonic wave can be considered as a holographic image caused by the incident fundamental wave. Compared with the conventional quasi-phase-matching method, this new method has significant advantages when applied to complicated nonlinear processes such as the nonlinear generation of special beams. As an example, we experimentally realized a second-harmonic Airy beam, and the results are found to agree well with numerical simulations.

15.
Opt Lett ; 38(11): 1793-5, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23722746

ABSTRACT

The nonlinear Huygens-Fresnel principle has been used to design multifunctional nonlinear optical devices. Focused second-harmonic generations have been observed with strong polarization sensitivity. Numerical simulations have been performed, and the results fit well with the experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...