Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 10(6): 1890-1895, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38738652

ABSTRACT

Currently used visible light catalysts either operate with high-power light sources or require prolonged periods of time for catalytic reactions. This presents a limitation regarding facile application in indoor environments and spaces frequented by the public. Furthermore, this gives rise to elevated power consumption. Here, we enhance photocatalytic performance with blue TiO2 and WO3 complexes covalently coupled through an organic molecule, 3-mercaptopropionic acid, under indoor light. Antibacterial experiments against 108 CFU/mL Escherichia coli (E. coli) suspensions were conducted under indoor light exposure conditions. They showed a sterilization effect of almost 90% within 70 min and nearly 100% after 110 min. The complex generates reactive oxygen species (ROS), such as •OH and O2•-, under natural air conditions. We also showed that h+ and •OH are important for sterilizing E. coli using common scavengers. This research highlights the potential of these complexes to generate ROS, effectively playing a crucial role in antibacterial effects under indoor light.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Light , Reactive Oxygen Species , Titanium , Tungsten , Escherichia coli/drug effects , Escherichia coli/radiation effects , Titanium/chemistry , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tungsten/chemistry , Tungsten/pharmacology , Catalysis , Reactive Oxygen Species/metabolism , Oxides/pharmacology , Oxides/chemistry , Microbial Sensitivity Tests
2.
J Phys Chem Lett ; 13(34): 8192-8199, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36005807

ABSTRACT

Exploring efficient catalysts for alkaline seawater electrolysis is highly desired yet challenging. Herein, coupling single-atom rhodium with amorphous nickel hydroxide nanoparticles on copper nanowire arrays is designed as a new active catalyst for the highly efficient alkaline seawater electrolysis. We found that an amorphous Ni(OH)2 nanoparticle is an effective catalyst to accelerate the water dissociation step. In contrast, the single-atom rhodium is an active site for adsorbed hydrogen recombination to generate H2. The NiRh-Cu NA/CF catalyst shows superior electrocatalytic activity toward HER, surpassing a benchmark Pt@C. In detail, the NiRh-Cu NA/CF catalyst exhibits HER overpotentials as low as 12 and 21 mV with a current density of 10 mA cm-2 in fresh water and seawater, respectively. At high current density, the NiRh-Cu NA/CF catalyst also exhibits an outstanding performance, where 300 mA cm-2 can be obtained at an overpotential of 155 mV and shows a slight fluctuation in the current density over 30 h.

3.
Commun Biol ; 4(1): 1405, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916605

ABSTRACT

Though various transgene expression switches have been adopted in a wide variety of organisms for basic and biomedical research, intrinsic obstacles of those existing systems, including toxicity and silencing, have been limiting their use in vertebrate transgenesis. Here we demonstrate a novel QF-based binary transgene switch (IQ-Switch) that is relatively free of driver toxicity and transgene silencing, and exhibits potent and highly tunable transgene activation by the chemical inducer tebufenozide, a non-toxic lipophilic molecule to developing zebrafish with negligible background. The interchangeable IQ-Switch makes it possible to elicit ubiquitous and tissue specific transgene expression in a spatiotemporal manner. We generated a RASopathy disease model using IQ-Switch and demonstrated that the RASopathy symptoms were ameliorated by the specific BRAF(V600E) inhibitor vemurafenib, validating the therapeutic use of the gene switch. The orthogonal IQ-Switch provides a state-of-the-art platform for flexible regulation of transgene expression in zebrafish, potentially applicable in cell-based systems and other model organisms.


Subject(s)
Animals, Genetically Modified/genetics , Gene Transfer Techniques , Genes, Switch , Transgenes , Zebrafish/genetics , Animals
4.
ACS Appl Mater Interfaces ; 13(9): 11403-11413, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33636973

ABSTRACT

The role of countercations that do not bind to core nanocrystals (NCs) but rather ensure charge balance on ligand-exchanged NC surfaces has been rarely studied and even neglected. Such a scenario is unfortunate, as an understanding of surface chemistry has emerged as a key factor in overcoming colloidal NC limitations as catalysts. In this work, we report on the unprecedented role of countercations in ligand exchange for a colloidal transition metal dichalcogenide (TMD), WSe2, to tune the d-band center toward the Fermi level for enhanced hydrogen desorption. Conventional long-chain organic ligands, oleylamine, of WSe2 NCs are exchanged with short atomic S2- ligands having countercations to preserve the charge balance (WSe2/S2-/M+, M = Li, Na, K). Upon exchange with S2- ligands, the charge-balancing countercations are intercalated between WSe2 layers, thereby serving a unique function as an electrochemical hydrogen evolution reaction (HER) catalyst. The HER activity of ligand-exchanged colloidal WSe2 NCs shows a decrease in overpotential by down-shift of d-band center to induce more electron-filling in antibonding orbital and an increase in the electrochemical active surface area (ECSA). Exchanging surface functionalities with S2- anionic ligands enhances HER kinetics, while the existence of intercalated countercations improves charge transfer with the electrolyte. The obtained results suggest that both anionic ligands and countercationic species in ligand exchange must be considered to enhance the overall catalytic activity of colloidal TMDs.

5.
Nanoscale ; 13(2): 1291-1302, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33409525

ABSTRACT

Controlling surface energies of each facet is essential for the anisotropic growth of two-dimensional transition metal chalcogenides (TMCs). However, it is a challenge due to stronger binding energies of ligand head groups to the edge facets compared to the planar facets. Herein, we demonstrate that the adsorption of ligands on metal positions can induce partial electron localization on the chalcogen sites, and then accelerate metal-chalcogen bond formation for enhanced anisotropic growth of nanosheets. And only in the case of trioctylphosphine oxide (TOPO)-adsorbed nanosheets, surface polarization can be unveiled on the surface of the colloidal nanosheets due to restricted development of nonpolar ligand shells by the steric effects of the ligands. Moreover, density functional theory (DFT) calculation results reveal that the decrease of surface energy on the (100) edge facets as well as the increase on the (001) basal facets by the adsorption of triorganylphosphine oxide also contribute to the preferentially lateral growth. As a result, various 2D TMCs, including MoSe2, WSe2, and SnSe2 synthesized with TOPO, show enhanced anisotropic growth.

6.
ChemSusChem ; 13(5): 945-955, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-31891223

ABSTRACT

The use of 2 D transition metal carbide MXenes as support materials to incorporate catalytically active compounds is of interest because of their unique properties. However, the preparation of well-dispersed catalytic phases on the inter-connected porous MXene network is challenging and has been rarely explored. This work focuses on the synthesis of basal-plane-porous titanium carbide MXene (ac-Ti3 C2 ) that is used subsequently as an effective host for the incorporation of a known catalytically active phase (IrCo) as an effective bifunctional electrocatalyst toward water splitting. The porous ac-Ti3 C2 with abundant macro/meso/micropores is prepared by a wet chemical method at room temperature and provides ideal anchor sites for intimate chemical bonding with alien compounds. The resulting IrCo@ac-Ti3 C2 electrocatalyst exhibits an excellent reactivity (220 mV at 10 mA cm-2 ) towards the oxygen evolution reaction in 1.0 m KOH, which surpasses that of the benchmark RuO2 , a low voltage cell of 1.57 V (@ 10 mA cm-2 ) and good long-term durability. Our work demonstrates the effectiveness of porosity engineering in MXene nanosheets as a support material to shorten ion migration pathways, to increase electrolyte accessibility between inter-sheets and to overcome inherited re-stacking and aggregation issues.

7.
Chemistry ; 25(4): 1037-1043, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30378186

ABSTRACT

The exploration of the rational design and synthesis of unique and robust architectured electrodes for the high capacitance, rate capability, and stability of supercapacitors is crucial to the future of energy storage technology. Herein, an in situ synthesis of multilayered titanium carbide MXene tightly caging within a 3 D conducting tangled polypyrrole (PPy) nanowire (NW) network is proposed as an effective strategy to prevent the aggregation of MXene, profoundly enhancing the electrochemical performance of the supercapacitor. Owing to the beneficial effects of an ideal 3 D interconnected porous structure and high electrical conductivity, the obtained electrode exhibits fast charge and ion transport kinetics as well as full usage of active material. As expected, the 3 D Ti3 C2 Tx @PPY NW exhibits a specific capacitance five times higher than that of pristine MXene (610 F g-1 ), a good rate capability up to a current density of 25 A g-1 , and excellent stability with 100 % retention after 14 000 cycles at 4 A g-1 , outperforming the known state-of-the-art MXene-based supercapacitor. Our work provides a facile method for enhancing the performance of MXene-based energy storage devices.

8.
Adv Sci (Weinh) ; 5(7): 1800068, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30027040

ABSTRACT

An ambipolar channel layer material is required to realize the potential benefits of ambipolar complementary metal-oxide-semiconductor field-effect transistors, namely their compact and efficient nature, reduced reverse power dissipation, and possible applicability to highly integrated circuits. Here, a ternary metal chalcogenide nanocrystal material, FeIn2S4, is introduced as a solution-processable ambipolar channel material for field-effect transistors (FETs). The highest occupied molecular orbital and the lowest unoccupied molecular orbital of the FeIn2S4 nanocrystals are determined to be -5.2 and -3.75 eV, respectively, based upon cyclic voltammetry, X-ray photoelectron spectroscopy, and diffraction reflectance spectroscopy analyses. An ambipolar FeIn2S4 FET is successfully fabricated with Au electrodes (EF = -5.1 eV), showing both electron mobility (14.96 cm2 V-1 s-1) and hole mobility (9.15 cm2 V-1 s-1) in a single channel layer, with an on/off current ratio of 105. This suggests that FeIn2S4 nanocrystals may be a promising alternative semiconducting material for next-generation integrated circuit development.

SELECTION OF CITATIONS
SEARCH DETAIL
...