Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharm ; 72(3): 359-374, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36651546

ABSTRACT

In this study, the protective functions of bacteria-free conditioned media from Bifidobacterium and Lactobacillus species against ultraviolet radiation-induced skin ageing and associated cellular damage were investigated. The effects of ultraviolet radiation-induced reactive oxygen species production were suppressed by all conditioned media; particularly, the loss of cell viability and downregulation of collagen gene expression were significantly reversed by the conditioned media from B. longum and B. lactis. Further exa mination of potential anti-pigmentation effects revealed that the B. lactis-derived conditioned media significantly inhibited tyrosinase activity and alpha-melanocyte-stimulating hormone-induced melanin production in human epidermal melanocytes. Further, the conditioned media suppressed the phosphorylation of extracellular signal- related kinase, which functions as an upstream regulator of melanogenesis. Therefore, B. lactis-derived conditioned media can potentially protect against cellular damage involved in skin-ageing processes.


Subject(s)
Probiotics , Ultraviolet Rays , Humans , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Ultraviolet Rays/adverse effects , Skin , Aging , Probiotics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...