Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 46(3): 152-61, 2005 Dec 20.
Article in English | MEDLINE | ID: mdl-16321511

ABSTRACT

Previous work has examined the effects of such factors as pH and peptide concentration on the self-assembly of ionic-complementary peptides. This work focused on the effect of sodium chloride on the molecular self-assembly of an ionic-complementary peptide EAK16-II (AEAEAKAKAEAEAKAK). Surface tensions and dimensions of the self-assembled nanostructures were determined for a wide range of peptide and sodium chloride concentrations using axisymmetric drop shape analysis-profile (ADSA-P) and atomic force microscopy (AFM), respectively. The critical aggregation concentration, or critical self-assembly concentration (CSAC), of EAK16-II was not significantly affected by the presence of NaCl. However, the analysis of size variations in self-assembled nanostructures in response to changes in NaCl concentration indicated that the presence of NaCl does influence the resulting dimensions of the peptide nanostructures when the peptide concentration is below its CSAC. A critical NaCl concentration was identified at approximately 20mM, below which the equivalent radius of the peptide fibrils increased with increasing salt concentration, and above which the opposite response was observed. This critical NaCl concentration was further confirmed in the surface tension measurements, where the equilibrium surface tension and induction time of the peptide at low concentrations (

Subject(s)
Oligopeptides/chemistry , Peptides/chemistry , Sodium Chloride/chemistry , Amino Acid Sequence , Microscopy, Atomic Force , Nanotechnology , Surface Tension
2.
Biomacromolecules ; 4(5): 1433-42, 2003.
Article in English | MEDLINE | ID: mdl-12959616

ABSTRACT

Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.


Subject(s)
Oligopeptides/chemistry , Amino Acid Sequence , Amyloidosis , Dimerization , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Nanotechnology , Solutions , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...