Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(26): e2300881, 2023 10.
Article in English | MEDLINE | ID: mdl-37267625

ABSTRACT

Superficial skin diseases, including skin infections and tumors, are common healthcare burdens. In this study, the in vivo activity of chrysomycin A (CA) is explored, and a transdermal liposomal CA formulation is further constructed for the simultaneous treatment of cutaneous melanoma and cutaneous methicillin-resistant Staphylococcus aureus (MRSA) infection. The prepared liposomes (TD-LP-CA) display a strong antitumor effect with an IC50 value of less than 0.1 µm in B16-F10 cells, suppress the proliferation of MRSA with a minimum inhibitory concentration (MIC) of 1 µm, and eradicate established MRSA biofilms at 10× MIC in vitro. More importantly, TD-LP-CA shows enhanced stratum corneum (SC) penetration, reaching more than 500 µm beneath the skin's surface due to modification with the TD peptide, and demonstrates excellent subcutaneous tumor penetration after skin application in vivo. TD-LP-CA displays an excellent therapeutic effect against intradermal MRSA infection in mice after topical dermal administration, as well as a moderate inhibitory effect on subcutaneous melanoma with a 75% tumor inhibition rate. The liposomes prepared herein can be a promising carrier for transcutaneous CA transfer for the treatment of superficial diseases such as skin tumors and infections due to their ability to overcome the skin barrier.


Subject(s)
Melanoma , Methicillin-Resistant Staphylococcus aureus , Skin Neoplasms , Animals , Mice , Liposomes , Administration, Cutaneous , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , Microbial Sensitivity Tests , Anti-Bacterial Agents
2.
Molecules ; 28(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36838771

ABSTRACT

The preparation and performance control of the cellulose membrane are one of the hot topics in the environmentally friendly separation membrane field. In this study, microcrystalline cellulose (MCC) was prepared by microwave-assisted acidic hydrolysis of cellulose obtained from jute, followed by the use of a mixture of N-methylmorpholine-N-oxide and water as a solvent to obtain the homogeneous casting liquid, which was scraped and subsequently immersed in the coagulation bath to form a smooth and dense cellulose membrane. During membrane formation, the crystal structure of MCC changed from type I to type II, but the chemical structure remained unchanged. The mechanical strength and separation performance of the membrane were related to the content of MCC in the casting liquid. When the content of MCC was about 7%, the tensile strength of the membrane reached a maximum value of 13.49 MPa, and the corresponding elongation at break was 68.12%. The water flux (J) and rejection rate (R) for the bovine serum albumin were 19.51 L/(m2·h) and 95.37%, respectively, under an optimized pressure of 0.2 MPa. In addition, the coagulation bath had a significant effect on the membrane separation performance, and J and R were positively and negatively correlated with the polarity of the coagulation bath. Among them, it was note-worthy that J and R of membrane formed in ethanol were 33.95 L/(m2·h) and 91.43%, separately. Compared with water as a coagulation bath, J was increased by 74% at the situation and R was roughly equivalent, showing better separation performance. More importantly, the relationship between the structure and separation performances has also been studied preliminarily. This work provides certain guidance for the preparation of high-performance MCC membranes.


Subject(s)
Cellulose , Cellulose/chemistry , Tensile Strength , Hydrolysis
3.
Front Immunol ; 13: 974935, 2022.
Article in English | MEDLINE | ID: mdl-36341343

ABSTRACT

Background: Atrial fibrillation (AF) is the most common arrhythmia. Previous studies mainly focused on identifying potential diagnostic biomarkers and treatment strategies for AF, while few studies concentrated on post-operative AF (POAF), particularly using bioinformatics analysis and machine learning algorithms. Therefore, our study aimed to identify immune-associated genes and provide the competing endogenous RNA (ceRNA) network for POAF. Methods: Three GSE datasets were downloaded from the GEO database, and we used a variety of bioinformatics strategies and machine learning algorithms to discover candidate hub genes. These techniques included identifying differentially expressed genes (DEGs) and circRNAs (DECs), building protein-protein interaction networks, selecting common genes, and filtering candidate hub genes via three machine learning algorithms. To assess the diagnostic value, we then created the nomogram and receiver operating curve (ROC). MiRNAs targeting DEGs and DECs were predicted using five tools and the competing endogenous RNA (ceRNA) network was built. Moreover, we performed the immune cell infiltration analysis to better elucidate the regulation of immune cells in POAF. Results: We identified 234 DEGs (82 up-regulated and 152 down-regulated) of POAF via Limma, 75 node genes were visualized via PPI network, which were mainly enriched in immune regulation. 15 common genes were selected using three CytoHubba algorithms. Following machine learning selection, the nomogram was created based on the four candidate hub genes. The area under curve (AUC) of the nomogram and individual gene were all over 0.75, showing the ideal diagnostic value. The dysregulation of macrophages may be critical in POAF pathogenesis. A novel circ_0007738 was discovered in POAF and the ceRNA network was eventually built. Conclusion: We identified four immune-associated candidate hub genes (C1QA, C1R, MET, and SDC4) for POAF diagnosis through the creation of a nomogram and evaluation of its diagnostic value. The modulation of macrophages and the ceRNA network may represent further therapy methods.


Subject(s)
Atrial Fibrillation , MicroRNAs , Humans , Computational Biology/methods , Gene Regulatory Networks , Atrial Fibrillation/etiology , Atrial Fibrillation/genetics , RNA, Messenger/genetics , MicroRNAs/genetics , Biomarkers , Machine Learning
4.
Drug Deliv ; 29(1): 1764-1775, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35638851

ABSTRACT

After molecule targeted drug, monoclonal antibody and antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs) have become the next generation targeted anti-tumor drugs due to its properties of low molecule weight, efficient cell penetration, low immunogenicity, good pharmacokinetic and large-scale synthesis by solid phase synthesis. Herein, we present a lytic peptide PTP7-drug paclitaxel conjugate assembling nanoparticles (named PPP) that can sequentially respond to dual stimuli in the tumor microenvironment, which was designed for passive tumor-targeted delivery and on-demand release of a tumor lytic peptide (PTP-7) as well as a chemotherapeutic agent of paclitaxel (PTX). To achieve this, tumor lytic peptide PTP-7 was connected with polyethylene glycol by a peptide substrate of legumain to serve as hydrophobic segments of nanoparticles to protect the peptide from enzymatic degradation. After that, PTX was connected to the amino group of the polypeptide side chain through an acid-responsive chemical bond (2-propionic-3-methylmaleic anhydride, CDM). Therefore, the nanoparticle (PPP) collapsed when it encountered the weakly acidic tumor microenvironment where PTX molecules fell off, and further triggered the cleavage of the peptide substrate by legumain that is highly expressed in tumor stroma and tumor cell surface. Moreover, PPP presents improved stability, improved drug solubility, prolonged blood circulation and significant inhibition ability on tumor growth, which gives a reasonable strategy to accurately deliver small molecule drugs and active peptides simultaneously to tumor sites.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/chemistry , Cysteine Endopeptidases , Humans , Hydrogen-Ion Concentration , Neoplasms/drug therapy , Paclitaxel/chemistry , Peptides/therapeutic use , Tumor Microenvironment
5.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209892

ABSTRACT

Ferritin naturally exists in most organisms and can specifically recognize the transferrin 1 receptor (TfR1), which is generally highly expressed on various types of tumor cells. The pH dependent reversible assembling and disassembling property of ferritin renders it as a suitable candidate for encapsulating a variety of anticancer drugs and imaging probes. Ferritins external surface is chemically and genetically modifiable which can serve as attachment site for tumor specific targeting peptides or moieties. Moreover, the biological origin of these protein cages makes it a biocompatible nanocarrier that stabilizes and protects the enclosed particles from the external environment without provoking any toxic or immunogenic responses. Recent studies, further establish ferritin as a multifunctional nanocarrier for targeted cancer chemotherapy and phototherapy. In this review, we introduce the favorable characteristics of ferritin drug carriers, the specific targeted surface modification and a multifunctional nanocarriers combined chemotherapy with phototherapy for tumor treatment. Taken together, ferritin is a potential ideal base of engineered nanoparticles for tumor therapy and still needs to explore more on its way.


Subject(s)
Antigens, CD/metabolism , Bioengineering/methods , Ferritins/metabolism , Neoplasms/metabolism , Receptors, Transferrin/metabolism , Animals , Drug Carriers , Drug Compounding , Drug Delivery Systems , Ferritins/genetics , Humans , Hydrogen-Ion Concentration , Nanoparticles , Neoplasms/drug therapy
6.
J Nanobiotechnology ; 19(1): 164, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34059070

ABSTRACT

BACKGROUND: Chrysomycin A (CA) has been reported as numerous excellent biological activities, such as antineoplastic and antibacterial. Though, poor solubility of CA limited its application in medical field. Due to good amphiphilicity and potential anticancer effect of disodium glycyrrhizin (Na2GA) as an excipient, an amorphous solid dispersion (Na2GA/CA-BM) consisting of CA and Na2GA was prepared in the present study by mechanochemical technology (roll mill ML-007, zirconium balls, 30 rpm, 2.5 h) to improve the solubility and oral bioavailability of CA. Then, Na2GA/CA-BM was self-assembled to micelles in water. The interaction of CA and Na2GA in solid state were investigated by X-ray diffraction studies, polarized light microscopy, and scanning electron microscope. Meanwhile, the properties of the sample solution were analyzed by dynamic light scattering and transmission electron. Furthermore, the oral bioavailability and antitumor ability of Na2GA/CA-BM in vivo were tested, providing a theoretical basis for future application of CA on cancer therapy. RESULTS: CA encapsulated by Na2GA was self-assembled to nano-micelles in water. The average diameter of nano-micelle was 131.6 nm, and zeta potential was - 11.7 mV. Three physicochemical detections showed that CA was transformed from crystal into amorphous form after treated with ball milling and the solubility increased by 50 times. Na2GA/CA-BM showed a significant increase of the bioavailability about two time that of free CA. Compared with free CA, the in-vivo antitumor studies also exhibited that Na2GA/CA-BM had an excellent inhibition of tumor growth. CONCLUSIONS: Na2GA/CA-BM nanoparticles (131.6 nm, - 11.7 mV) prepared by simple and low-cost mechanochemical technology can improve oral bioavailability and antitumor efficacy of CA in vivo, suggesting a potential formulation for efficient anticancer treatment.


Subject(s)
Administration, Oral , Aminoglycosides/chemistry , Aminoglycosides/pharmacology , Micelles , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Chemistry, Pharmaceutical , Female , Glycyrrhizic Acid/chemistry , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Nanoparticles/chemistry , Particle Size , Solubility , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...