Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Microbiol Biotechnol ; 27(4): 739-746, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28081355

ABSTRACT

As alternatives to antibiotics in livestocks, probiotics have been used, although most of them in the form of liquid or semisolid formulations, which show low cell viability after oral administration. Therefore, suitable dry dosage forms should be developed for livestocks to protect probiotics against the low pH in the stomach such that the products have higher probiotics survivability. Here, in order to develop a dry dosage forms of probiotics for poultry, we used hydroxypropyl methylcellulose phthalate 55 (HPMCP 55) as a tablet-forming matrix to develop probiotics in a tablet form for poultry. Here, we made three different kinds of probiotics-loaded tablet under different compression forces and investigated their characteristics based on their survivability, morphology, disintegration time, and kinetics in simulated gastrointestinal fluid. The results indicated that the probiotics formulated in the tablets displayed higher survival rates in acidic gastric conditions than probiotics in solution. Rapid release of the probiotics from the tablets occurred in simulated intestinal fluid because of fast swelling of the tablets in neutral pH. As a matrix of tablet, HPMCP 55 provided good viability of probiotics after 6 months under refrigeration. Moreover, after oral administration of probiotics-loaded tablets to chicken, more viable probiotics were observed, than with solution type, through several digestive areas of chicken by the tablets.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Poultry/microbiology , Probiotics/administration & dosage , Probiotics/chemistry , Tablets/chemistry , Administration, Oral , Animals , Colony Count, Microbial , Compressive Strength , Drug Stability , Drug Storage , Gastric Acid/chemistry , Hydrogen-Ion Concentration , Intestines/microbiology , Methylcellulose/analogs & derivatives , Methylcellulose/pharmacology , Microbial Viability , Stomach/microbiology , Tablets/pharmacology , Temperature , Time Factors
2.
Protein Expr Purif ; 126: 77-83, 2016 10.
Article in English | MEDLINE | ID: mdl-27260969

ABSTRACT

The emergence of highly pathogenic variant porcine epidemic diarrhea virus (PEDV) strains, from 2013 to 2014, in North American and Asian countries have greatly threatened global swine industry. Therefore, development of effective vaccines against PEDV variant strains is urgently needed. Recently, it has been reported that the N-terminal domain (NTD) of S1 domain of PEDV spike protein is responsible for binding to the 5-N-acetylneuraminic acid (Neu5Ac), a possible sugar co-receptor. Therefore, the NTD of S1 domain could be an attractive target for the development of subunit vaccines. In this study, the NTD spanning amino acid residues 25-229 (S25-229) of S1 domain of PEDV variant strain was expressed in Escherichia coli BL21 (DE3) in the form of inclusion bodies (IBs). S25-229 IBs were solubilized in 20 mM sodium acetate (pH 4.5) buffer containing 8 M urea and 1 mM dithiothreitol with 95% yield. Solubilized S25-229 IBs were refolded by 10-fold flash dilution and purified by one-step cation exchange chromatography with >95% purity and 20% yield. The CD spectrum of S25-229 showed the characteristic pattern of alpha helical structure. In an indirect ELISA, purified S25-229 showed strong reactivity with mouse anti-PEDV sera. In addition, immunization of mice with 20 µg of purified S25-229 elicited highly potent serum IgG titers. Finally, mouse antisera against S25-229 showed immune reactivity with native PEDV S protein in an immunofluorescence assay. These results suggest that purified S25-229 may have potential to be used as a subunit vaccine against PEDV variant strains.


Subject(s)
Inclusion Bodies , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Viral Vaccines , Animals , Chlorocebus aethiops , Immunization , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Inclusion Bodies/immunology , Inclusion Bodies/metabolism , Mice , Porcine epidemic diarrhea virus/chemistry , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Solubility , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification , Swine , Vero Cells , Viral Vaccines/biosynthesis , Viral Vaccines/genetics , Viral Vaccines/immunology , Viral Vaccines/isolation & purification
3.
BMC Biotechnol ; 16(1): 39, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27142206

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine. The spike glycoprotein (S) of PEDV is the major immunogenic determinant that plays a pivotal role in the induction of neutralizing antibodies against PEDV, which therefore is an ideal target for the development of subunit vaccine. In an attempt to develop a subunit vaccine for PEDV, we cloned two different fragments of S protein and expressed as glutathione S-transferase (GST)-tagged fusion proteins, namely rGST-COE and rGST-S1D, in E.coli. However, the expression of these recombinant protein antigens using a variety of expression vectors, strains, and induction conditions invariably resulted in inclusion bodies. To achieve the soluble expression of recombinant proteins, several chaperone co-expression systems were tested in this study. RESULTS: We firstly tested various chaperone co-expression systems and found that co-expression of trigger factor (TF) with recombinant proteins at 15 °C was most useful in soluble production of rGST-COE and rGST-S1D compared to GroEL-ES and DnaK-DnaJ-GrpE/GroEL-ES systems. The soluble rGST-COE and rGST-S1D were purified using glutathione Sepharose 4B with a yield of 7.5 mg/l and 5 mg/l, respectively. Purified proteins were detected by western blot using mouse anti-GST mAb and pig anti-PEDV immune sera. In an indirect ELISA, purified proteins showed immune reactivity with pig anti-PEDV immune sera. Finally, immunization of mice with 10 µg of purified proteins elicited highly potent serum IgG and serum neutralizing antibody titers. CONCLUSIONS: In this study, soluble production of recombinant spike protein of PEDV, rGST-COE and rGST-S1D, were achieved by using TF chaperone co-expression system. Our results suggest that soluble rGST-COE and rGST-S1D produced by co-expressing chaperones may have the potential to be used as subunit vaccine antigens.


Subject(s)
Escherichia coli Proteins/genetics , Peptidylprolyl Isomerase/genetics , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/metabolism , Protein Engineering/methods , Viral Proteins/genetics , Viral Proteins/immunology , Animals , Escherichia coli , Female , Gene Expression Regulation, Bacterial/genetics , Mice , Mice, Inbred BALB C , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Solubility , Viral Proteins/biosynthesis
4.
J Control Release ; 233: 114-25, 2016 07 10.
Article in English | MEDLINE | ID: mdl-27189136

ABSTRACT

The development of subunit mucosal vaccines requires an appropriate delivery system or an immune modulator such as an adjuvant to improve antigen immunogenicity. The nasal route for vaccine delivery by microparticles has attracted considerable interest, although challenges such as the rapid mucociliary clearance in the respiratory mucosa and the low immunogenicity of subunit vaccine still remain. Here, we aimed to develop mannan-decorated mucoadhesive thiolated hydroxypropylmethyl cellulose phthalate (HPMCP) microspheres (Man-THM) that contain ApxIIA subunit vaccine - an exotoxin fragment as a candidate for a subunit nasal vaccine against Actinobacillus pleuropneumoniae. For adjuvant activity, mucoadhesive thiolated HPMCP microspheres decorated with mannan could be targeted to the PRRs (pathogen recognition receptors) and mannose receptors (MR) of antigen presenting cells (APCs) in the respiratory immune system. The potential adjuvant ability of Man-THM for intranasal immunization was confirmed by in vitro and in vivo experiments. In a mechanistic study using APCs in vitro, it was found that Man-THM enhanced receptor-mediated endocytosis by stimulating the MR of APCs. In vivo, the nasal vaccination of ApxIIA-loaded Man-THM in mice resulted in higher levels of mucosal sIgA and serum IgG than mice in the ApxIIA and ApxIIA-loaded THM groups due to the specific recognition of the mannan in the Man-THM by the MRs of the APCs. Moreover, ApxIIA-containing Man-THM protected immunized mice when challenged with strains of A. pleuropneumoniae serotype 5. These results suggest that mucoadhesive Man-THM may be a promising candidate for a nasal vaccine delivery system to elicit systemic and mucosal immunity that can protect from pathogenic bacteria infection.


Subject(s)
Actinobacillus Infections/prevention & control , Bacterial Proteins/administration & dosage , Bacterial Vaccines/administration & dosage , Hemolysin Proteins/administration & dosage , Mannans/administration & dosage , Methylcellulose/analogs & derivatives , Actinobacillus pleuropneumoniae/immunology , Adhesiveness , Administration, Intranasal , Animals , Antibodies, Bacterial/blood , Antigen-Presenting Cells/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Vaccines/chemistry , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Female , Hemolysin Proteins/chemistry , Hemolysin Proteins/immunology , Immunity, Mucosal , Immunization/methods , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mannans/chemistry , Methylcellulose/administration & dosage , Methylcellulose/chemistry , Mice , Mice, Inbred BALB C , Microspheres , Respiratory Mucosa/chemistry , Sulfhydryl Compounds/administration & dosage , Sulfhydryl Compounds/chemistry
5.
BMC Immunol ; 16: 71, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26608025

ABSTRACT

BACKGROUND: To initiate mucosal immune responses, antigens in the intestinal lumen must be transported into gut-associated lymphoid tissue through M cells. Recently, it has been increasingly recognized that receptor activator of NF-kB ligand (RANKL) controls M cell differentiation by interacting with RANK expressed on the sub-epithelium of Peyer's patches. In this study, we increased the number of M cells using soluble RANKL (sRANKL) as a potent mucosal adjuvant. RESULTS: For efficient oral delivery of sRANKL, we constructed recombinant Lactococcus lactis (L. lactis) IL1403 secreting sRANKL (sRANKL-LAB). The biological activity of recombinant sRANKL was confirmed by observing RANK-RANKL signaling in vitro. M cell development in response to oral administration of recombinant L. lactis was determined by 1.51-fold higher immunohistochemical expression of M cell marker GP-2, compared to that of non-treatment group. In addition, an adjuvant effect of sRANKL was examined by immunization of mice with M-BmpB as a model antigen after treatment with sRANKL-LAB. Compared with the wild-type L. lactis group, the sRANKL-LAB group showed significantly increased systemic and mucosal immune responses specific to M-BmpB. CONCLUSIONS: Our results show that the M cell development by sRANKL-LAB can increase the antigen transcytotic capability of follicle-associated epithelium, and thereby enhance the mucosal immune response, which implies that oral administration of sRANKL is a promising adjuvant strategy for efficient oral vaccination.


Subject(s)
Adjuvants, Immunologic , Gene Expression , Lactococcus lactis/genetics , RANK Ligand/genetics , Vaccines/immunology , Administration, Oral , Animals , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Peyer's Patches/cytology , Peyer's Patches/immunology , Peyer's Patches/metabolism , RANK Ligand/administration & dosage , RANK Ligand/immunology , RANK Ligand/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Vaccines/administration & dosage
6.
Eur J Pharm Sci ; 80: 16-25, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26415829

ABSTRACT

Mucosal vaccination of protein as an antigen requires appropriate delivery or adjuvant systems to deliver antigen to mucosal immune cells efficiently and generate valid immune responses. For successful nasal immunization, the obstacles imposed by the normal process of mucociliary clearance which limits residence time of applied antigens and low antigen delivery to antigen presenting cells (APCs) in nasal associated lymphoid tissue (NALT) need to be overcome for the efficient vaccination. Here, we prepared mucoadhesive and mannan-decorated thiolated Eudragit microspheres (Man-TEM) as a nasal vaccine carrier to overcome the limitations. Mucoadhesive thiolated Eudragit (TE) were decorated with mannan for targeting mannose receptors (MR) in antigen presenting cells (APCs) to obtain efficient immune responses. The potential adjuvant ability of Man-TEM for intranasal immunization was confirmed by in vitro and in vivo experiments. In mechanistic study using APCs in vitro, we obtained that Man-TEM enhanced the receptor-mediated endocytosis by stimulating the MR receptors of APCs. The nasal vaccination of OVA-loaded Man-TEM in mice showed higher levels of serum IgG and mucosal sIgA than the soluble OVA group due to the specific recognition of MR of APCs by the mannan in the Man-TEM. These results suggest that mucoadhesive and Man-TEM may be a promising candidate for nasal vaccine delivery system to elicit systemic and mucosal immunity.


Subject(s)
Antigen-Presenting Cells/immunology , Mannans/administration & dosage , Polymethacrylic Acids/administration & dosage , Vaccines/administration & dosage , Administration, Intranasal , Animals , Cell Line , Female , Immunoglobulin A, Secretory/blood , Immunoglobulin A, Secretory/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Microspheres , Receptors, Mitogen/immunology , Vaccines/immunology
7.
Curr Microbiol ; 68(5): 657-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24452427

ABSTRACT

Considerable evidence suggests that the gut microbiota is complex in many mammals and gut bacteria communities are essential for maintaining gut homeostasis. To date the research on the gut microbiota of donkey is surprisingly scarce. Therefore, we performed high-throughput sequencing of the 16S rRNA genes V5-V6 hypervariable regions from gut fecal material to characterize the gut microbiota of healthy donkeys and compare the difference of gut microbiota between male and female donkeys. Sixty healthy donkeys (30 males and 30 females) were enrolled in the study, a total of 915,691 validated reads were obtained, and the bacteria found belonged to 21 phyla and 183 genera. At the phylum level, the bacterial community composition was similar for the male and female donkeys and predominated by Firmicutes (64 % males and 64 % females) and Bacteroidetes (23 % males and 21 % females), followed by Verrucomicrobia, Euryarchaeota, Spirochaetes, and Proteobacteria. At the genus level, Akkermansia was the most abundant genus (23 % males and 17 % females), followed by Sporobacter, Methanobrevibacter, and Treponema, detected in higher distribution proportion in males than in females. On the contrary, Acinetobacter and Lysinibacillus were lower in males than in females. In addition, six phyla and 15 genera were significantly different between the male and female donkeys for species abundance. These findings provide previously unknown information about the gut microbiota of donkeys and also provide a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in donkey and other animals.


Subject(s)
Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Equidae/microbiology , Gastrointestinal Tract/microbiology , Animals , Biota , Feces/microbiology , Female , Genes, rRNA , Male , RNA, Ribosomal, 16S/genetics , Sex Factors
8.
Biotechnol Lett ; 32(2): 195-202, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19834648

ABSTRACT

Our current understanding of muscle and adipose tissue development has been largely restricted to the study of murine myogenic and adipogenic cell lines, since attempts to establish these cell lines from other species have met with only limited success. Here we report that a spontaneously immortalized bovine embryonic fibroblast cell line (BEFS) undergoes differentiation into adipogenic or myogenic lineages when ectopically transduced with PPARgamma2 (an adipogenic lineage determinant) or MyoD (a myogenic lineage determinant) and grown in adipogenic and myogenic differentiation culture media (ADCM and MDCM, respectively). We also found that PPARgamma2-overexpressing BEFS cells (BEFS-PPARgamma2) grown in ADCM with or without the PPARgamma2 ligand, troglitazone, preferentially differentiate into adipogenic cells in the presence of ectopic MyoD expression. Ectopic expression of PPARgamma2 in the inducible MyoD-overepxressing BEFS cells (BEFS-TetOn-MyoD) completely suppresses myogenic differentiation and leads to a significant increase in adipogenic differentiation, suggesting that the adipogenic differentiation program might be dominant. Therefore, BEFS, BEFS-PPARgamma2, and BEFS-TetOn-MyoD would be a valuable biological model for understanding a fundamental principle underlying myogenic and adipogenic development, and for isolating various genetic and chemical factors that enable muscle and adipocyte differentiation.


Subject(s)
Adipocytes/cytology , Adipocytes/physiology , Fibroblasts/cytology , Fibroblasts/physiology , Genetic Enhancement/methods , Myoblasts/cytology , Myoblasts/physiology , PPAR gamma/metabolism , Animals , Cattle , Cell Culture Techniques/methods , Cell Differentiation , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , PPAR gamma/genetics , Tissue Engineering/methods
9.
Biosci Biotechnol Biochem ; 70(11): 2589-97, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17090935

ABSTRACT

The effects were observed of feeding a high-temperature-micro-time (HTMT)-treated diet of high-quality extruded soybean (ESB) on trans-10, cis-12 conjugated linoleic acid (CLA) incorporation in intra-muscular fat and on the lipid metabolism of twelve Holstein steers. The animals were randomly allocated to three groups, the control group being fed on a normal diet, and the other two groups being fed on a diet containing high-quality ESB with or without the HTMT treatment. The experimental period was four months. The content of total CLA in both the HTMT and non-HTMT-treated diets was higher than that in the control diet (P<0.05). The concentration of trans-10, cis-12 CLA was significantly higher in the HTMT-treated diet than in the non-treated diets at P<0.05, and the HTMT-treatment decreased the intra-muscular fat content (P<0.05). The expression of fatty acid synthase (FAS) and the plasma insulin-like growth factor-1 (IGF-1) level in the HTMT-treated group were lower than those in the control group (P<0.05). Lipoprotein lipase (LPL) mRNA level in the adipose tissue was lower in the non-HTMT-treated group than in the control (P<0.05). These results show that the HTMT treatment increased the level of trans-10, cis-12 CLA in the intra-muscular fat. This increased level of trans-10, cis-12 CLA may inhibit lipogenesis in the intra-muscular fat of Holstein steers.


Subject(s)
Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animal Feed , Glycine max , Linoleic Acids, Conjugated/metabolism , Meat , Silicone Elastomers/pharmacology , Animals , Cattle , Lipid Metabolism/genetics , RNA, Messenger/genetics , Temperature , Time Factors
10.
Mol Cells ; 21(2): 206-12, 2006 Apr 30.
Article in English | MEDLINE | ID: mdl-16682814

ABSTRACT

We have established in culture a spontaneously immortalized bovine embryonic fibroblast (BEF) cell line that has lost p53 and p16(INK4a) functions. MyoD is a muscle-specific regulator capable of inducing myogenesis in a number of cell types. When the BEF cells were transduced with MyoD they differentiated efficiently to desmin-positive myofibers in the presence of 2% horse serum and 1.7 nM insulin. The myogenic differentiation of this cell line was more rapid and obvious than that of C2C12 cells, as judged by morphological changes and expression of various muscle regulatory factors. To confirm that lack of the p53 and p16(INK4a) pathway does not prevent MyoD-mediated myogenesis, we established a cell line transformed with SV40LT (BEFV) and introduced MyoD into it. In the presence of 2% horse serum and 1.7 nM insulin, the MyoD-transduced BEFV cells differentiated like the MyoD-transduced BEFS cells, and displayed a similar pattern of expression of muscle regulatory proteins. Taken together, our results indicate that MyoD overexpression overcomes the defect in muscle differentiation associated with immortalization and cell transformation caused by the loss of p53 and Rb functions.


Subject(s)
Cell Differentiation/physiology , Fibroblasts/physiology , Muscle Development/physiology , MyoD Protein/metabolism , Retinoblastoma Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cattle , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Fibroblasts/cytology , MyoD Protein/genetics , Retinoblastoma Protein/genetics , Tumor Suppressor Protein p53/genetics
11.
Mol Cells ; 21(1): 29-33, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16511344

ABSTRACT

We have established three immortal bovine muscular epithelial (BME) cell lines, one spontaneously immortalized (BMES), the second SV40LT-mediated (BMEV) and the third hTERT-mediated (BMET). The morphology of the three immortal cell lines was similar to that of early passage primary BME cells. Each of the immortal cell lines made cytokeratin, a typical epithelial marker. BMET grew faster than the other immortal lines and the BME cells, in 10% FBS-DMEM medium, whereas neither the primary cells nor the three immortal cell lines grew in 0.5% FBS-DMEM. The primary BME cells and the immortal cell lines, with the exception of BMES, made increasing amounts of p53 protein when treated with doxorubicin, a DNA damaging agent. On the other hand, almost half of the cells in populations of the three immortal cell lines may lack p16(INK4a) regulatory function, compared to primary BME cells that were growth arrested by enforced expression of p16(INK4a). In soft-agar assays, the primary cells and immortal cell lines proved to be less transformed in phenotype than HeLa cells. The three immortal epithelial-type cell lines reported here are the first cell lines established from muscle tissue of bovine or other species.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Muscles/cytology , Animals , Cattle , Cell Adhesion , Cell Line , Cell Line, Transformed , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Kinetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...