Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Case Rep Ophthalmol ; 14(1): 257-266, 2023.
Article in English | MEDLINE | ID: mdl-37383172

ABSTRACT

Peripheral ophthalmic artery aneurysm is a rare disease entity. We review the relevant literature and report a case of fusiform aneurysm involving the entire intraorbital ophthalmic artery in association with multiple intracranial and extracranial aneurysms, diagnosed on digital subtraction angiography. The patient suffered irreversible blindness secondary to compressive optic neuropathy which did not improve after a 3-day trial of intravenous methylprednisolone. Autoimmune screen was normal. The underlying cause is unknown.

3.
Small ; 18(2): e2105172, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34862841

ABSTRACT

A strategy of lattice-reversible binary intermetallic compounds of metallic elements is proposed for applications in flexible lithium-ion battery (LIB) anode with high capacity and cycling stability. First, the use of metallic elements can ensure excellent electronic conductivity and high capacity of the active anode substance. Second, binary intermetallic compounds possess a larger initial lattice volume than metallic monomers, so that the problem of volume expansion can be alleviated. Finally, the design of binary intermetallic compounds with lattice reversibility further improves the cycle stability. In this work, the feasibility of this strategy is verified using an indium antimonide (InSb) system. The volumetric expansion and lithium storage mechanism of InSb are investigated by in situ Raman characterization and theoretical calculations. The active material utilization is significantly improved and the growth of In whiskers is inhibited in the micron-sized ball-milled and carbon coated InSb (bInSb@C) anode, which exhibits a reversible capacity of 733.8 mAh g-1 at 0.2 C, and provides a capacity of 411.5 mAh g-1 after 200 cycles at 3 C with an average Coulombic efficiency of 99.95%. This strategy is validated in pouch cells, illustrating the great potential of lattice-reversible binary intermetallic compounds for use as commercial flexible LIB anodes.

4.
PLoS Genet ; 17(10): e1009863, 2021 10.
Article in English | MEDLINE | ID: mdl-34673780

ABSTRACT

Disease-associated trinucleotide repeats form secondary DNA structures that interfere with replication and repair. Replication has been implicated as a mechanism that can cause repeat expansions and contractions. However, because structure-forming repeats are also replication barriers, it has been unclear whether the instability occurs due to slippage during normal replication progression through the repeat, slippage or misalignment at a replication stall caused by the repeat, or during subsequent replication of the repeat by a restarted fork that has altered properties. In this study, we have specifically addressed the fidelity of a restarted fork as it replicates through a CAG/CTG repeat tract and its effect on repeat instability. To do this, we used a well-characterized site-specific replication fork barrier (RFB) system in fission yeast that creates an inducible and highly efficient stall that is known to restart by recombination-dependent replication (RDR), in combination with long CAG repeat tracts inserted at various distances and orientations with respect to the RFB. We find that replication by the restarted fork exhibits low fidelity through repeat sequences placed 2-7 kb from the RFB, exhibiting elevated levels of Rad52- and Rad8ScRad5/HsHLTF-dependent instability. CAG expansions and contractions are not elevated to the same degree when the tract is just in front or behind the barrier, suggesting that the long-traveling Polδ-Polδ restarted fork, rather than fork reversal or initial D-loop synthesis through the repeat during stalling and restart, is the greatest source of repeat instability. The switch in replication direction that occurs due to replication from a converging fork while the stalled fork is held at the barrier is also a significant contributor to the repeat instability profile. Our results shed light on a long-standing question of how fork stalling and RDR contribute to expansions and contractions of structure-forming trinucleotide repeats, and reveal that tolerance to replication stress by fork restart comes at the cost of increased instability of repetitive sequences.


Subject(s)
DNA Replication/genetics , DNA/genetics , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeats/genetics , DNA Repair/genetics , Genomic Instability/genetics , Schizosaccharomyces/genetics
5.
Adv Sci (Weinh) ; 8(16): e2100736, 2021 08.
Article in English | MEDLINE | ID: mdl-34114353

ABSTRACT

Cross-linked polyethylene glycol-based resin (c-PEGR) is constructed by a ring-opening reaction of polyethylene glycol diglycidyl ether (PEGDE) with epoxy groups and polyether amine (PEA) with amino groups. By confining the hydroxyl groups with inferior oxidative stability to the c-PEGR backbone, the oxidation potential of the PEG-based polymer material with reduced reactivity is boosted to 4.36 V. The c-PEGR based gel electrolyte shows excellent flexibility, lithium-ion transport, lithium compatibility, and enhanced oxidation stability, and is successfully applied to a 4.35 V lithium cobaltate (LCO)||lithium (Li) battery system. A quasi-static linear scanning voltammetry (QS-LSV) method is proposed for the first time to accurately measure the oxidation potential and electrochemical stability window of materials with low conductivities such as polymers, which possesses the advantages of high accuracy and short test time. This work provides new insights and research techniques for selecting polymer electrolytes for high-voltage flexible lithium-ion batteries (LIBs).

7.
Aging (Albany NY) ; 11(3): 1030-1044, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30779707

ABSTRACT

Chemotherapy-induced ovarian aging not only increases the risk for early menopause-related complications but also results in infertility in young female cancer survivors. Oogonial stem cells have the ability to generate new oocytes and thus provide new opportunities for treating ovarian aging and female infertility. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phenol derived from plants, that has been shown to have positive effects on longevity and redox flow in lipid metabolism and a preventive function against certain tumors. To evaluate whether resveratrol could promote the repair of oogonial stem cells damage in a busulfan/cyclophosphamide (Bu/Cy)-induced accelerated ovarian aging model, female mice were administered 30 and 100 mg/kg/d resveratrol through a gavage for 2 weeks. We demonstrated that resveratrol (30 mg/kg/d) relieved oogonial stem cells loss and showed an attenuating effect on Bu/Cy-induced oxidative apoptosis in mouse ovaries, which may be attributed to the attenuation of oxidative levels in ovaries. Additionally, we also showed that Res exerted a dose-dependent effect on oogonial stem cells and attenuated H2O2-induced cytotoxicity and oxidative stress injury by activating Nrf2 in vitro. Therefore, resveratrol could be of a potential therapeutic drug used to prevent chemotherapy-induced ovarian aging.

SELECTION OF CITATIONS
SEARCH DETAIL
...