Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Cancer ; 10(2): 547-555, 2019.
Article in English | MEDLINE | ID: mdl-30719151

ABSTRACT

Endometrial cancer represents the leading frequency in gynecological malignancy in developed countries. Even with early detection, metastasis and recurrence remain the main reasons for a high death rate. MicroRNA-449a (miR-449a) has been reported to function as a tumor suppressor, yet the role of miR-449a in endometrial cancer metastasis has not been investigated. The present study identified that miR-449a was downregulated in advanced endometrial cancer. Overexpression of miR-449a decreased the migration and invasion of KLE and AN3CA endometrial cancer cells. Using luciferase reporter assays, we identified that miR-449a directly targeted the steroid receptor coactivator (SRC) by binding to sites in the 3' untranslated regions. Elevated expressions of SRC have been witnessed in advanced endometrial cancer tissues and have promoted tumor metastasis. We also identified that the suppressive effect of miR-449a on metastasis could be mediated by downregulating SRC and that miR-449a could suppress AKT and ERK1/2 pathway activation in endometrial cancer cells. These findings contribute to the current understanding of the function of miR-449a in endometrial cancer.

3.
Cancer Sci ; 100(12): 2459-64, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19769630

ABSTRACT

Drug resistance is a major concern in the successful treatment of ovarian cancer. In the present study we report a combinational drug regime using arsenic trioxide (ATO) and cisplatin (CDDP) to increase therapeutic potentiality in ovarian cancer cells. ATO-mediated growth inhibition and apoptosis in human suspension ovarian cancer COC1 cells were evaluated by MTT assay and annexin V assay using flow cytometry, respectively. cDNA arrays were performed to screen ATO-mediated gene expression. Treatment of COC1 cells with ATO alone resulted in growth inhibition and apoptosis with a dose-and time-dependent fashion; further cDNA arrays showed that 34 genes (23 up-regulated genes and 11 down-regulated genes) may strongly associate with the antiproliferative and pro-apoptotic effects induced by ATO. Furthermore, Chou-Talalay analysis was used to evaluate the combinational effect of ATO and CDDP as well as dose-reduction index (DRI) in a panel of ovarian cancer cells including CDDP-sensitive and -resistant cell lines. The combination index (CI) analysis indicated that the interaction effect of ATO/CDDP exhibited a wide range of synergism in all the adherent ovarian cancer cells (A2780, IGROV-1, SKOV-3, and R182) as well as 0.93 to 0.69 for IC(50) to IC(90) in suspension COC1 cells where CI < 1, =1, and >1, define synergism, additive effect, and antagonism, respectively. More intriguingly, the combination of ATO and CDDP yielded favorable DRIs ranging from 1.23-fold to 13.51-fold dose reduction. These results suggest that ATO and its combination with CDDP present therapeutic potential for ovarian cancer, and deserve further preclinical and clinical studies.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenicals/pharmacology , Cisplatin/pharmacology , Ovarian Neoplasms/drug therapy , Oxides/pharmacology , Apoptosis/drug effects , Arsenic Trioxide , Cell Line, Tumor , Drug Synergism , Female , Gene Expression Profiling , Humans , Ovarian Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...