Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(40): 36037-36046, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36249379

ABSTRACT

In this study, green orange peel (GOP) was feasibly evidenced in preparing selenium nanoparticles (SeNPs). Acting as reducing agents, polyphenolic compounds were extracted from GOP at the optimal extraction conditions (at 70 °C for 1.5 h, mass ratio of dried orange peel/distilled water of 5/100). The formation of SeNPs was observed at the wavelength range of 250-300 nm by ultraviolet-visible spectroscopy (UV-vis), and their highest yield could be reached at the following conditions: volume ratio of extract/selenious acid solution (V Ext/V Se) of 40/10, synthesis duration of 4 h, selenious acid concentration (C Se) of 80 mM, and reaction temperature of 120 °C. The highly crystalline structure of SeNPs in the hexagonal phase was characterized by powder X-ray diffraction (XRD) with a lattice parameter of 4.3 Å; meanwhile, their spheres with an average crystal size of 18.3 nm were estimated by high-resolution transmission electron microscope (HR-TEM). The rationale of bioreducing agents extracted from green orange peel for the formation of SeNPs was also recognized by Fourier-transform infrared spectroscopy (FT-IR). The antibacterial investigation of the SeNP sample was assessed against antibiotic-resistant bacteria, typically methicillin-resistant Staphylococcus aureus (MRSA), by executing the zone of inhibition and the minimum inhibitory concentration (MIC) tests. The SeNP sample demonstrated excellent antibacterial activity with an average diameter of inhibition zones of 20.0 ± 0.7 mm and an MIC of 4.94 µg/L. A comparison of the physicochemical properties of SeNPs synthesized from GOP extract by the hydrothermal method with SeNP products from other green reducing agents and other methods as well as its antibacterial activity compared with other nanoparticles and some antibiotics was conducted to highlight the superiority of GOP-mediated green-synthesized SeNPs.

2.
ACS Omega ; 7(23): 20092-20103, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721961

ABSTRACT

Ni-based catalysts dispersed on different supports (MgO-α-Al2O3, CeO2, SBA-15, and MgO-SBA-15) were prepared by the impregnation method. Characteristics of the catalysts, including specific surface areas (N2 physisorption), crystalline phase compositions (powder X-ray diffraction, Raman spectroscopy), reducibility (hydrogen temperature-programmed reduction, H2-TPR), and morphology (scanning electron microscopy (SEM) and transmission electron microscopy, TEM)) were investigated. The activity and stability of the catalysts were tested for the combined steam and CO2 reforming of methane at 700 °C in a microflow system. The results show that the catalysts exhibit high activity in the BRM reaction. At 700 °C, the conversion of CH4 and CO2 reached 86-99% and 67-80%, respectively, in which the Ni/Mg-SBA catalyst is the best with conversions of CH4 and CO2 reaching 99% and 80%. Coke accumulation on the surface of the catalysts for 100 h time on stream (TOS) was evaluated by the temperature-programmed oxidation (TPO) technique. The major cause of the catalytic deactivation was elucidated by combining the determination of the amount and type of deposited coke with the changes in the physicochemical properties of the catalysts after the long-term reaction. Almost complete loss of activity was observed on Ni/Mg-Al catalyst after 100 h TOS, while the activity drop was slow on the Ni/Mg-SBA sample, about 15-20% of the total value. Otherwise, the Ni/CeO2 and Ni/SBA catalysts firmly retained their stable activity for 100 h TOS due to the minimal carbon deposition and stability of these catalysts' structure. The highly considerable formation of inert Cγ carbon and sintering over Ni catalyst supported on MgO-α-Al2O3 were responsible for the lower stability of this catalyst compared to those supported on CeO2 and SBA-15.

SELECTION OF CITATIONS
SEARCH DETAIL
...