Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591495

ABSTRACT

The radiation effects of electrons and protons on the spectroscopic and optical properties of oxide glasses doped with Yb3+ in various glass systems were investigated to understand the impact of the glass composition on the glass photo-response. Changes in the optical and emission properties were seen after the radiation treatment, and the magnitude of the changes depended on the irradiation source and dose. For all the investigated materials, the absorption coefficients in the 200-550 nm range increase post-irradiation, revealing the formation of defects in the glasses during the irradiation. While the spectroscopic properties of the tellurite glass remain unchanged, a small reduction in the Yb3+ emission intensity was seen after irradiating the phosphate, borosilicate, and germanate glasses, indicating that a reduction of Yb3+ to Yb2+ might occur in these glasses during the radiation treatment. The changes in the optical and spectroscopic properties after proton irradiation are small as they are localized at the surface of the glasses due to the shallow penetration depth of the proton in the glass. Even though the doses are small, the electron irradiation produces larger changes in the optical and spectroscopic properties since the electrons penetrate the entire volume of the glasses. All the changes in the optical and spectroscopic properties of the glasses were successfully reversed after a short heat treatment revealing the reversible nature of the photo-response of the investigated glasses.

2.
Materials (Basel) ; 13(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878282

ABSTRACT

This review focuses on the radiation-induced changes in germanate and tellurite glasses. These glasses have been of great interest due to their remarkable potential for photonics, in terms of extended transmission window in the mid-infrared, ability of rare-earth loading suitable with a laser, and amplification in the near- and mid-infrared or high nonlinear optical properties. Here, we summarize information about possible radiation-induced defects, mechanisms of their formation, and the influence of the glass composition on this process. Special attention is paid to laser-induced structural modification of these glasses, including possible mechanisms of the laser-glass interaction, laser-induced crystallization, and waveguide writing. It is shown that these methods can be used for photostructuring of the glass and have great potential for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...