Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Physiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953534

ABSTRACT

The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.

2.
Transpl Immunol ; 86: 102095, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038741

ABSTRACT

Renal transplantation is the preferred treatment option for patients with end-stage renal disease (ESRD) in a clinical setting. Antibody mediated rejection (AMR) is one of the leading causes of graft dysfunction. To address the current shortcomings in the early diagnosis and treatment of AMR in clinical practice, this article analyzes the distribution of different circulating T follicular helper (cTfh) cell subtypes and B cell subpopulations in peripheral blood and detects the cytokine levels of chemokine ligand 13 (CXCL13), interleukin-21 (IL-21), and interleukin-4 (IL-4) related to cTfh cells in peripheral blood of kidney transplant recipients. Moreover, we also explore the correlation between cTfh cells, peripheral blood memory B cells, and AMR, their value as early predictive indicators of AMR, and explore potential therapeutic targets for AMR patients. Our results indicate that the proportion of cTfh cells increased at the onset of AMR, which plays an important role in antigen-specific B-cell immune regulation. Activation of cTfh cells in AMR patients correlates with phenotypes of memory B cells and plasma blasts. cTfh cells and memory B cells have promising diagnostic efficacies and predictive values for AMR. The proportion of cTfh cells to CD4+ T cells and the proportion of memory B cells to CD19+ B cells are correlated with serum creatinine levels, indicating that cTfh cells and memory B cells may be involved in the progression of AMR. In addition, the CXCL13, IL-21, and IL-4, which were associated with cTfh cells, may be involved in the onset of AMR.

3.
Stem Cell Res Ther ; 15(1): 143, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764049

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is a debilitating illness in humans that causes permanent loss of movement or sensation. To treat SCI, exosomes, with their unique benefits, can circumvent limitations through direct stem cell transplantation. Therefore, we utilized Gelfoam encapsulated with exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-EX) in a rat SCI model. METHODS: SCI model was established through hemisection surgery in T9 spinal cord of female Sprague-Dawley rats. Exosome-loaded Gelfoam was implanted into the lesion site. An in vivo uptake assay using labeled exosomes was conducted on day 3 post-implantation. Locomotor functions and gait analyses were assessed using Basso-Beattie-Bresnahan (BBB) locomotor rating scale and DigiGait Imaging System from weeks 1 to 8. Nociceptive responses were evaluated through von Frey filament and noxious radiant heat tests. The therapeutic effects and potential mechanisms were analyzed using Western blotting and immunofluorescence staining at week 8 post-SCI. RESULTS: For the in vivo exosome uptake assay, we observed the uptake of labeled exosomes by NeuN+, Iba1+, GFAP+, and OLIG2+ cells around the injured area. Exosome treatment consistently increased the BBB score from 1 to 8 weeks compared with the Gelfoam-saline and SCI control groups. Additionally, exosome treatment significantly improved gait abnormalities including right-to-left hind paw contact area ratio, stance/stride, stride length, stride frequency, and swing duration, validating motor function recovery. Immunostaining and Western blotting revealed high expression of NF200, MBP, GAP43, synaptophysin, and PSD95 in exosome treatment group, indicating the promotion of nerve regeneration, remyelination, and synapse formation. Interestingly, exosome treatment reduced SCI-induced upregulation of GFAP and CSPG. Furthermore, levels of Bax, p75NTR, Iba1, and iNOS were reduced around the injured area, suggesting anti-inflammatory and anti-apoptotic effects. Moreover, exosome treatment alleviated SCI-induced pain behaviors and reduced pain-associated proteins (BDNF, TRPV1, and Cav3.2). Exosomal miRNA analysis revealed several promising therapeutic miRNAs. The cell culture study also confirmed the neurotrophic effect of HucMSCs-EX. CONCLUSION: Implantation of HucMSCs-EX-encapsulated Gelfoam improves SCI-induced motor dysfunction and neuropathic pain, possibly through its capabilities in nerve regeneration, remyelination, anti-inflammation, and anti-apoptosis. Overall, exosomes could serve as a promising therapeutic alternative for SCI treatment.


Subject(s)
Disease Models, Animal , Exosomes , Mesenchymal Stem Cells , Neuralgia , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Exosomes/metabolism , Neuralgia/therapy , Neuralgia/metabolism , Rats , Female , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Locomotion , Gelatin Sponge, Absorbable , Umbilical Cord/cytology
4.
Genes Genet Syst ; 992024 May 10.
Article in English | MEDLINE | ID: mdl-38417894

ABSTRACT

Homeostasis is essential for muscle repair and regeneration after skeletal muscle exercise. This study investigated the role of methyltransferase-like 21C (METTL21C) in skeletal muscle of mice after exercise and the potential mechanism. First, muscle samples were collected at 2, 4 and 6 weeks after exercise, and liver glycogen, muscle glycogen, blood lactic acid and triglyceride were assessed. Moreover, the expression levels of autophagy markers and METTL21C in skeletal muscle were analyzed. The results showed that the expression levels of METTL21C and MYH7 in the gastrocnemius muscle of mice in the exercise group were significantly higher after exercise than those in the control group, which suggested that long-term exercise promoted the formation of slow-twitch muscle fibers in mouse skeletal muscle. Likewise, the autophagy capacity was enhanced with the prolongation of exercise in muscles. The findings were confirmed in mouse C2C12 cells. We discovered that knockdown of Mettl21c reduced the expression of MYH7 and the autophagy level in mouse myoblasts. These findings indicate that METTL21C promotes skeletal muscle homeostasis after exercise by enhancing autophagy, and also contributes to myogenic differentiation and the formation of slow muscle fibers.


Subject(s)
Autophagy , Methyltransferases , Muscle Fibers, Slow-Twitch , Myosin Heavy Chains , Physical Conditioning, Animal , Animals , Mice , Cell Line , Methyltransferases/metabolism , Methyltransferases/genetics , Mice, Inbred C57BL , Muscle Development , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics
5.
Neuron ; 112(7): 1165-1181.e8, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38301648

ABSTRACT

Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.


Subject(s)
Anti-Anxiety Agents , Animals , Anxiety/metabolism , Hypothalamus , Cerebellum , Anxiety Disorders
6.
Acta Pharmacol Sin ; 45(3): 517-530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880339

ABSTRACT

Malignant ventricular arrhythmia (VA) after myocardial infarction (MI) is mainly caused by myocardial electrophysiological remodeling. Brahma-related gene 1 (BRG1) is an ATPase catalytic subunit that belongs to a family of chromatin remodeling complexes called Switch/Sucrose Non-Fermentable Chromatin (SWI/SNF). BRG1 has been reported as a molecular chaperone, interacting with various transcription factors or proteins to regulate transcription in cardiac diseases. In this study, we investigated the potential role of BRG1 in ion channel remodeling and VA after ischemic infarction. Myocardial infarction (MI) mice were established by ligating the left anterior descending (LAD) coronary artery, and electrocardiogram (ECG) was monitored. Epicardial conduction of MI mouse heart was characterized in Langendorff-perfused hearts using epicardial optical voltage mapping. Patch-clamping analysis was conducted in single ventricular cardiomyocytes isolated from the mice. We showed that BRG1 expression in the border zone was progressively increased in the first week following MI. Cardiac-specific deletion of BRG1 by tail vein injection of AAV9-BRG1-shRNA significantly ameliorated susceptibility to electrical-induced VA and shortened QTc intervals in MI mice. BRG1 knockdown significantly enhanced conduction velocity (CV) and reversed the prolonged action potential duration in MI mouse heart. Moreover, BRG1 knockdown improved the decreased densities of Na+ current (INa) and transient outward potassium current (Ito), as well as the expression of Nav1.5 and Kv4.3 in the border zone of MI mouse hearts and in hypoxia-treated neonatal mouse ventricular cardiomyocytes. We revealed that MI increased the binding among BRG1, T-cell factor 4 (TCF4) and ß-catenin, forming a transcription complex, which suppressed the transcription activity of SCN5A and KCND3, thereby influencing the incidence of VA post-MI.


Subject(s)
Myocardial Infarction , Mice , Animals , Myocardial Infarction/metabolism , Arrhythmias, Cardiac/genetics , Myocardium/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Myocytes, Cardiac/metabolism
7.
BMC Med ; 21(1): 348, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37679672

ABSTRACT

BACKGROUND: Full-cohort and sibling-comparison designs have yielded inconsistent results about the impacts of caesarean delivery on offspring health outcomes, with the effect estimates from the latter being more likely directed towards the null value. We hypothesized that the seemingly conservative results obtained from the sibling-comparison design might be attributed to inadequate adjustment for non-shared confounders between siblings, particularly maternal age at delivery. METHODS: A systematic review and meta-analysis was first conducted. PubMed, Embase, and the Web of Science were searched from database inception to April 6, 2022. Included studies (1) examined the association of caesarean delivery, whether elective or emergency, with offspring health outcomes; (2) simultaneously conducted full-cohort and sibling-comparison analyses; and (3) reported adjusted effect estimates with 95% confidence intervals (95% CIs). No language restrictions were applied. Data were extracted by 2 reviewers independently. Three-level meta-analytic models were used to calculate the pooled odds ratios (ORs) and 95% CIs for caesarean versus vaginal delivery on multiple offspring health outcomes separately for full-cohort and sibling-comparison designs. Subgroup analyses were performed based on the method of adjustment for maternal age at delivery. A simulation study was then conducted. The simulated datasets were generated with some key parameters derived from the meta-analysis. RESULTS: Eighteen studies involving 21,854,828 individuals were included. The outcomes assessed included mental and behavioral disorders; endocrine, nutritional and metabolic diseases; asthma; cardiorespiratory fitness; and multiple sclerosis. The overall pooled OR for estimates from the full-cohort design was 1.14 (95% CI: 1.11 to 1.17), higher than that for estimates from the sibling-comparison design (OR = 1.08; 95% CI: 1.02 to 1.14). Stratified analyses showed that estimates from the sibling-comparison design varied considerably across studies using different methods to adjust for maternal age at delivery in multivariate analyses, while those from the full-cohort design were rather stable: in studies that did not adjust maternal age at delivery, the pooled OR of full-cohort vs. sibling-comparison design was 1.10 (95% CI: 0.99 to 1.22) vs. 1.06 (95% CI: 0.85 to 1.31), in studies adjusting it as a categorical variable, 1.15 (95% CI: 1.11 to 1.19) vs. 1.07 (95% CI: 1.00 to 1.15), and in studies adjusting it as a continuous variable, 1.12 (95% CI: 1.05 to 1.19) vs. 1.12 (95% CI: 0.98 to 1.29). The severe underestimation bias related to the inadequate adjustment of maternal age at delivery in sibling-comparison analyses was fully replicated in the simulation study. CONCLUSIONS: Sibling-comparison analyses may underestimate the association of caesarean delivery with multiple offspring health outcomes due to inadequate adjustment of non-shared confounders, such as maternal age at delivery. Thus, we should be cautious when interpreting the seemingly conservative results of sibling-comparison analyses in delivery-related studies.


Subject(s)
Asthma , Siblings , Female , Pregnancy , Humans , Cesarean Section , Delivery, Obstetric , Outcome Assessment, Health Care
8.
World J Gastroenterol ; 29(29): 4557-4570, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37621756

ABSTRACT

BACKGROUND: Hydrogen sulfide (H2S) is a recently discovered gaseous neurotransmitter in the nervous and gastrointestinal systems. It exerts its effects through multiple signaling pathways, impacting various physiological activities. The nucleus tractus solitarius (NTS), a vital nucleus involved in visceral sensation, was investigated in this study to understand the role of H2S in regulating gastric function in rats. AIM: To examine whether H2S affects the nuclear factor kappa-B (NF-κB) and transient receptor potential vanilloid 1 pathways and the neurokinin 1 (NK1) receptor in the NTS. METHODS: Immunohistochemical and fluorescent double-labeling techniques were employed to identify cystathionine beta-synthase (CBS) and c-Fos co-expressed positive neurons in the NTS during rat stress. Gastric motility curves were recorded by inserting a pressure-sensing balloon into the pylorus through the stomach fundus. Changes in gastric motility were observed before and after injecting different doses of NaHS (4 nmol and 8 nmol), physiological saline, Capsazepine (4 nmol) + NaHS (4 nmol), pyrrolidine dithiocarbamate (PDTC, 4 nmol) + NaHS (4 nmol), and L703606 (4 nmol) + NaHS (4 nmol). RESULTS: We identified a significant increase in the co-expression of c-Fos and CBS positive neurons in the NTS after 1 h and 3 h of restraint water-immersion stress compared to the expressions observed in the control group. Intra-NTS injection of NaHS at different doses significantly inhibited gastric motility in rats (P < 0.01). However, injection of saline, first injection NF-κB inhibitor PDTC or transient receptor potential vanilloid 1 (TRPV1) antagonist Capsazepine or NK1 receptor blockers L703606 and then injection NaHS did not produce significant changes (P > 0.05). CONCLUSION: NTS contains neurons co-expressing CBS and c-Fos, and the injection of NaHS into the NTS can suppress gastric motility in rats. This effect may be mediated by activating TRPV1 and NK1 receptors via the NF-κB channel.


Subject(s)
Hydrogen Sulfide , Animals , Rats , Hydrogen Sulfide/pharmacology , NF-kappa B , Solitary Nucleus , Dehydration
9.
Pharmacol Res ; 191: 106773, 2023 05.
Article in English | MEDLINE | ID: mdl-37068531

ABSTRACT

Specific medications to combat cerebellar ataxias, a group of debilitating movement disorders characterized by difficulty with walking, balance and coordination, are still lacking. Notably, cerebellar microglial activation appears to be a common feature in different types of ataxic patients and rodent models. However, direct evidence that cerebellar microglial activation in vivo is sufficient to induce ataxia is still lacking. Here, by employing chemogenetic approaches to manipulate cerebellar microglia selectively and directly, we found that specific chemogenetic activation of microglia in the cerebellar vermis directly leads to ataxia symptoms in wild-type mice and aggravated ataxic motor deficits in 3-acetylpyridine (3-AP) mice, a classic mouse model of cerebellar ataxia. Mechanistically, cerebellar microglial proinflammatory activation induced by either chemogenetic M3D(Gq) stimulation or 3-AP modeling hyperexcites Purkinje cells (PCs), which consequently triggers ataxia. Blockade of microglia-derived TNF-α, one of the most important proinflammatory cytokines, attenuates the hyperactivity of PCs driven by microglia. Moreover, chemogenetic inhibition of cerebellar microglial activation or suppression of cerebellar microglial activation by PLX3397 and minocycline reduces the production of proinflammatory cytokines, including TNF-α, to effectively restore the overactivation of PCs and alleviate motor deficits in 3-AP mice. These results suggest that cerebellar microglial activation may aggravate the neuroinflammatory response and subsequently induce dysfunction of PCs, which in turn triggers ataxic motor deficits. Our findings thus reveal a causal relationship between proinflammatory activation of cerebellar microglia and ataxic motor symptoms, which may offer novel evidence for therapeutic intervention for cerebellar ataxias by targeting microglia and microglia-derived inflammatory mediators.


Subject(s)
Cerebellar Ataxia , Mice , Animals , Cerebellar Ataxia/chemically induced , Purkinje Cells/physiology , Microglia , Tumor Necrosis Factor-alpha/pharmacology , Cerebellum , Cytokines
10.
Cerebellum ; 22(5): 888-904, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36040660

ABSTRACT

The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Animals , Receptors, Oxytocin , Oxytocin , Purkinje Cells
11.
Front Microbiol ; 14: 1286682, 2023.
Article in English | MEDLINE | ID: mdl-38179451

ABSTRACT

Introduction: ß-Glucosidase serves as the pivotal rate-limiting enzyme in the cellulose degradation process, facilitating the hydrolysis of cellobiose and cellooligosaccharides into glucose. However, the widespread application of numerous ß-glucosidases is hindered by their limited thermostability and low glucose tolerance, particularly in elevated-temperature and high-glucose environments. Methods: This study presents an analysis of a ß-glucosidase gene belonging to the GH1 family, denoted lqbg8, which was isolated from the metagenomic repository of Hehua hot spring located in Tengchong, China. Subsequently, the gene was cloned and heterologously expressed in Escherichia coli BL21(DE3). Post expression, the recombinant ß-glucosidase (LQBG8) underwent purification through a Ni affinity chromatography column, thereby enabling the in-depth exploration of its enzymatic properties. Results: LQBG8 had an optimal temperature of 70°C and an optimum pH of 5.6. LQBG8 retained 100 and 70% of its maximum activity after 2-h incubation periods at 65°C and 70°C, respectively. Moreover, even following exposure to pH ranges of 3.0-10.0 for 24 h, LQBG8 retained approximately 80% of its initial activity. Notably, the enzymatic prowess of LQBG8 remained substantial at glucose concentrations of up to 3 M, with a retention of over 60% relative activity. The kinetic parameters of LQBG8 were characterized using cellobiose as substrate, with Km and Vmax values of 28 ± 1.9 mg/mL and 55 ± 3.2 µmol/min/mg, respectively. Furthermore, the introduction of LQBG8 (at a concentration of 0.03 mg/mL) into a conventional cellulase reaction system led to an impressive 43.7% augmentation in glucose yield from corn stover over a 24-h period. Molecular dynamics simulations offered valuable insights into LQBG8's thermophilic nature, attributing its robust stability to reduced fluctuations, conformational changes, and heightened structural rigidity in comparison to mesophilic ß-glucosidases. Discussion: In summation, its thermophilic, thermostable, and glucose-tolerant attributes, render LQBG8 ripe for potential applications across diverse domains encompassing food, feed, and the production of lignocellulosic ethanol.

12.
Biomed Pharmacother ; 153: 113344, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35780620

ABSTRACT

Betahistine and gastrodin are the first-line medications for vestibular disorders in clinical practice, nevertheless, their amelioration effects on vestibular dysfunctions still lack direct comparison and their unexpected extra-vestibular effects remain elusive. Recent clinical studies have indicated that both of them may have effects on the gastrointestinal (GI) tract. Therefore, we purposed to systematically compare both vestibular and GI effects induced by betahistine and gastrodin and tried to elucidate the mechanisms underlying their GI effects. Our results showed that betahistine and gastrodin indeed had similar therapeutic effects on vestibular-associated motor dysfunction induced by unilateral labyrinthectomy. However, betahistine reduced total GI motility with gastric hypomotility and colonic hypermotility, whereas gastrodin did not influence total GI motility with only slight colonic hypermotility. In addition, betahistine, at normal dosages, induced a slight injury of gastric mucosa. These GI effects may be due to the different effects of betahistine and gastrodin on substance P and vasoactive intestinal peptide secretion in stomach and/or colon, and agonistic/anatgonistic effects of betahistine on histamine H1 and H3 receptors expressed in GI mucosal cells and H3 receptors distributed on nerves within the myenteric and submucosal plexuses. Furthermore, treatment of betahistine and gastrodin had potential effects on gut microbiota composition, which could lead to changes in host-microbiota homeostasis in turn. These results demonstrate that gastrodin has a consistent improvement effect on vestibular functions compared with betahistine but less effect on GI functions and gut microbiota, suggesting that gastrodin may be more suitable for vestibular disease patients with GI dysfunction.


Subject(s)
Receptors, Histamine H3 , Vestibule, Labyrinth , Animals , Benzyl Alcohols , Betahistine/pharmacology , Betahistine/therapeutic use , Glucosides , Mice , Receptors, Histamine H3/metabolism , Vestibular Nuclei/metabolism , Vestibule, Labyrinth/metabolism
14.
Article in English | MEDLINE | ID: mdl-35565005

ABSTRACT

The association of gestational weight gain (GWG) with perinatal outcomes seems to differ between women with and without gestational diabetes mellitus (GDM). Whether GDM is an effect-modifier of the association has not been verified. This study aimed to assess the modifying effect of GDM on the association of GWG with perinatal outcomes. Data on 12,128 pregnant women (3013 with GDM and 9115 without GDM) were extracted from a prospective, multicenter, cohort study in China. The associations of total and trimester-specific GWG rates (GWGR) with perinatal outcomes, including small size for gestational age, large size for gestational age (LGA), preterm birth, cesarean delivery, and gestational hypertension disorders, were assessed. The modifying effect of GDM on the association was assessed on both multiplicative and additive scales, as estimated by mixed-effects logistic regression. As a result, total GWGR was associated with all of the perinatal outcomes. GDM modified the association of total GWGR with LGA and cesarean delivery on both scales (all p < 0.05) but did not modify the association with other outcomes. The modifying effect was observed in the third trimester but not in the first or the second trimester. Therefore, maternal GWG is associated with perinatal outcomes, and GDM modifies the association with LGA and cesarean delivery in the third trimester.


Subject(s)
Diabetes, Gestational , Gestational Weight Gain , Premature Birth , Body Mass Index , China/epidemiology , Cohort Studies , Diabetes, Gestational/epidemiology , Female , Humans , Infant, Newborn , Pregnancy , Pregnancy Outcome/epidemiology , Premature Birth/epidemiology , Prospective Studies , Retrospective Studies , Weight Gain
15.
Front Oncol ; 11: 744107, 2021.
Article in English | MEDLINE | ID: mdl-34956870

ABSTRACT

BACKGROUNDS: CD146 is highly expressed in various malignant tumors and associated with the poor prognosis. However, the role of CD146 in clear cell renal cell carcinoma (ccRCC) is still unknown. This study aimed to identify the role of CD146 in ccRCC by integrated bioinformatics analysis. METHODS: CD146 mRNA expression and methylation data in ccRCC was examined using the TIMER, UALCAN, and MethSurv databases. CD146 expression in paraffin-embedded tissues (140 cancer samples and 140 paracancer tissues) from our cohort were examined by immunohistochemistry assay. The LinkedOmics database was used to study the signaling pathways related to CD146 expression. TIMER and TISIDB were used to analyze the correlations among CD146, CD146-coexpressed genes, tumor-infiltrating immune cells, and immunomodulators. The relationship between CD146 and drug response in renal cancer cell lines was analyzed by the CTRP and CCLE databases. RESULTS: The mRNA and protein levels of CD146 were elevated in ccRCC tissues than that in paracancer tissues. The DNA methylation of CD146 in ccRCC tissues were lower than that in normal tissues. Importantly, high CD146 expression was associated with poor prognosis in patients with ccRCC. Furthermore, multivariate Cox regression analysis showed that CD146 was an independent prognostic factor in ccRCC. GO and KEGG pathway analyses indicated the co-expressed genes of CD146 were mainly related to a variety of immune-related pathways, including Th1 and Th2 cell differentiation, Th17 cell differentiation, and leukocyte transendothelial migration. Our data demonstrated that the expression and methylation status of CD146 were strongly correlated with immune infiltration levels, immunomodulators, and chemokines. Further, the sensitivity and resistance of renal cancer cell lines to some drugs were related to CD146 expression. CONCLUSIONS: Our study highlights the clinical significance of CD146 in ccRCC and provides novel insights into the immune function of CD146 in the tumor microenvironment.

16.
Front Oncol ; 11: 756843, 2021.
Article in English | MEDLINE | ID: mdl-34956878

ABSTRACT

Clear cell renal cell carcinoma (ccRCC), which is the most prevalent renal cell carcinoma subtype, has a poor prognosis. Emerging strategies for enhancing the immune response in ccRCC therapy are currently being investigated. Fibrinogen-like Protein 1(FGL1) is a novel mechanism that tumors may use to evade the immune system by binding LAG-3 and negatively regulating T cells. In this study, we aimed at investigating the underlying mechanism of FGL1 in ccRCC, and its expression and prognostic value. We found that FGL1 was upregulated in tumor tissues and plasma specimens of ccRCC patients. High FGL1 expression predicted a poor prognosis for ccRCC patients. We also discovered that overexpression of FGL1 enhances RCC cell migration, invasion, and metastasis by activating the epithelial-to-mesenchymal transition (EMT). Consistent with these results, we identified a significant positive correlation between expression of FGL1 and EMT-related genes through tissue microarray analysis. Gene-expression analysis revealed that FGL1-deficient ccRCC cell lines had altered transcriptional output in inflammatory response, cell-cell signaling, negative regulation of T cell activation, and intracellular signal transduction. Depletion of FGL1 significantly inhibited tumor growth and lung metastasis in orthotopic xenograft mouse model. Infiltration of myeloid-derived CD11b+ and Ly6G+ immune cells in tumor microenvironment (TME) was strikingly decreased when FGL1 expression reduced. Therefore, increased FGL1 expression in ccRCC is positively correlated with poor prognosis. Mechanistically, FGL1 facilitates the EMT process and modulates TME, which promotes ccRCC progression and metastasis. Consequently, targeting FGL1 can potentially improve clinical outcome of ccRCC patients.

17.
Cell Stress Chaperones ; 26(2): 297-309, 2021 03.
Article in English | MEDLINE | ID: mdl-33159661

ABSTRACT

O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.


Subject(s)
Endoplasmic Reticulum Stress , Proteins/metabolism , Stress, Physiological , Acylation , Homeostasis , Humans
18.
Huan Jing Ke Xue ; 41(6): 2852-2860, 2020 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-32608802

ABSTRACT

The availability of carbon (C), nitrogen (N), and other substrates in soil determines the growth and metabolism of microorganisms and affects the activity of extracellular enzymes. To study the activities of ß-1,4-glucosidase (BG) and ß-1,4-N-acetylglucosaminidase (NAG) in response to C and N availability, samples that underwent four treatments-non-fertilization (CK), chemical fertilizer (NPK), combination of organic manure and chemical fertilizer (OM), and mixture of straw and chemical fertilizer (ST)-were collected from long-term fertilization paddy soil and incubated for 0, 4, 8, and 12 months to obtain soil with different C and N availability gradients. The results showed that the dissolved organic carbon(DOC) content of OM and ST treatment samples was 2-3 times higher than that of CK and NPK treatment samples. With the increase of DOC and ammonium (NH4+-N) contents, the activities of BG and NAG and the contents of microbial biomass C (MBC) and N (MBN) showed no increase during incubation within each treatment. Fertilization treatments, incubation time, and their interaction are crucial factors varying the contents of DOC, NH4+-N, MBC, and MBN among different fertilization treatments (P<0.01). There was a positive correlation between MBC/MBN and DOC/NH4+-N of OM treatment (P<0.05) and a negative relationship between ln(BG)/ln(NAG) and DOC/NH4+-N of ST treatment (P<0.01), indicating that the availability of substrates played a key role in the potential activity of extracellular enzymes in paddy soil, and the carbon-nitrogen ratio of microbial biomass was controlled by the C/N stoichiometry of substrates in soil. The results have a certain guiding significance for further study on the variation of extracellular enzyme activity in paddy soil, regulating the balance of carbon and nitrogen, and improving the fertility of paddy soil.


Subject(s)
Fertilizers/analysis , Oryza , Agriculture , Carbon , Manure , Nitrogen/analysis , Soil , Soil Microbiology
19.
Sheng Li Xue Bao ; 71(6): 809-823, 2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31879736

ABSTRACT

Spinal α-motoneurons directly innervate skeletal muscles and function as the final common path for movement and behavior. The processes that determine the excitability of motoneurons are critical for the execution of motor behavior. In fact, it has been noted that spinal motoneurons receive various neuromodulatory inputs, especially monoaminergic one. However, the roles of histamine and hypothalamic histaminergic innervation on spinal motoneurons and the underlying ionic mechanisms are still largely unknown. In the present study, by using the method of intracellular recording on rat spinal slices, we found that activation of either H1 or H2 receptor potentiated repetitive firing behavior and increased the excitability of spinal α-motoneurons. Both of blockage of K+ channels and activation of Na+-Ca2+ exchangers were involved in the H1 receptor-mediated excitation on spinal motoneurons, whereas the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were responsible for the H2 receptor-mediated excitation. The results suggest that, through switching functional status of ion channels and exchangers coupled to histamine receptors, histamine effectively biases the excitability of the spinal α-motoneurons. In this way, the hypothalamospinal histaminergic innervation may directly modulate final motor outputs and actively regulate spinal motor reflexes and motor execution.


Subject(s)
Histamine , Motor Neurons , Animals , Histamine/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Motor Neurons/drug effects , Motor Neurons/physiology , Rats , Receptors, Histamine H2/metabolism , Sodium-Calcium Exchanger/metabolism
20.
Clin Proteomics ; 16: 38, 2019.
Article in English | MEDLINE | ID: mdl-31719821

ABSTRACT

BACKGROUND: Neuroticism is a core personality trait and a major risk factor for several mental and physical diseases, particularly in females, who score higher on neuroticism than men, on average. However, a better understanding of the expression profiles of proteins in the circulating blood of different neurotic female populations may help elucidate the intrinsic mechanism of neurotic personality and aid prevention strategies on mental and physical diseases associated with neuroticism. METHODS: In our study, female subjects were screened for inclusion by the Eysenck Personality Questionnaire (EPQ), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI) scales and routine physical examination. Subjects who passed the examination and volunteered to participate were grouped by neuroticism using EPQ scores (0 and 1 = low neuroticism group; > 5 = high neuroticism group). Proteins in serum samples of the two neuroticism groups were identified using isobaric tags for relative and absolute quantification (iTRAQ) technology. RESULTS: A total of 410 proteins exhibited significant differences between high and low neuroticism, 236 proteins were significantly upregulated and 174 proteins were significantly downregulated. Combine the results of GO and KEGG enrichment analysis of differences proteins between high and low neuroticism with the PPI network, it could be observed that the Alpha-synuclein (SNCA), ATP7A protein (ATP7A), Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 (GNG2), cyclin-dependent kinase 6 (CDK6), myeloperoxidase (MPO), azurocidin (AZU1), Histone H2B type 1-H (HIST1H2BH), Integrin alpha-M (ITGAM) and Matrix metalloproteinase-9 (MMP9) might participate in the intrinsic mechanism of neuroticism by regulating response to catecholamine stimulus, catecholamine metabolic process, limbic system development and transcriptional misregulation in cancer pathway. CONCLUSIONS: Our study revealed the characteristics of the neurotic personality proteome, which might be intrinsic mechanism of the neurotic population.

SELECTION OF CITATIONS
SEARCH DETAIL
...