Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Numer Method Biomed Eng ; 36(3): e3303, 2020 03.
Article in English | MEDLINE | ID: mdl-31886948

ABSTRACT

Deep learning methods combined with large datasets have recently shown significant progress in solving several medical tasks. However, collecting and annotating large datasets can be a very cumbersome and expensive task. We tackle these problems with a virtual database approach where training data is generated using computer simulations of related phenomena. Specifically, we concentrate on the following problem: can cardiovascular indices such as aortic elasticity, diastolic and systolic blood pressures, and blood flow from heart be predicted continuously using wearable photoplethysmographic sensors? We simulate the blood flow using a haemodynamic model consisting of the entire human circulation. Repeated evaluation of the simulator allows us to create a database of "virtual subjects" with size that is only limited by available computational resources. Using this database, we train neural networks to predict the cardiac indices from photoplethysmographic signal waveform. We consider two approaches: neural networks based on predefined input features and deep convolutional neural networks taking waveform directly as the input. The performance of the methods is demonstrated using numerical examples, thus carrying out a preliminary assessment of the approaches. The results show improvements in accuracy compared with the previous methods. The improvements are especially significant with indices related to aortic elasticity and maximum blood flow. The proposed approach would provide new means to measure cardiovascular health continuously, for example, with a simple wrist device.


Subject(s)
Databases, Factual , Machine Learning , Computer Simulation , Deep Learning , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...