Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Ophthalmol ; 102(2): 151-171, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38174651

ABSTRACT

This article is an English translation of the 4th Finnish Current Care Guideline for diagnostics, treatment and follow-up of primary open-angle glaucoma, normal-tension glaucoma and pseudoexfoliative glaucoma. This guideline is based on systematic literature reviews and expert opinions with Finland's geographical and operational healthcare environment in mind.


Subject(s)
Exfoliation Syndrome , Glaucoma, Open-Angle , Glaucoma , Humans , Glaucoma, Open-Angle/diagnosis , Glaucoma, Open-Angle/therapy , Exfoliation Syndrome/diagnosis , Exfoliation Syndrome/therapy , Finland/epidemiology , Intraocular Pressure
2.
Sci Rep ; 14(1): 2250, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38278832

ABSTRACT

The eye possesses a paravascular solute transport pathway that is driven by physiological pulsations, resembling the brain glymphatic pathway. We developed synchronous multimodal imaging tools aimed at measuring the driving pulsations of the human eye, using an eye-tracking functional eye camera (FEC) compatible with magnetic resonance imaging (MRI) for measuring eye surface pulsations. Special optics enabled integration of the FEC with MRI-compatible video ophthalmoscopy (MRcVO) for simultaneous retinal imaging along with functional eye MRI imaging (fMREye) of the BOLD (blood oxygen level dependent) contrast. Upon optimizing the fMREye parameters, we measured the power of the physiological (vasomotor, respiratory, and cardiac) eye and brain pulsations by fast Fourier transform (FFT) power analysis. The human eye pulsated in all three physiological pulse bands, most prominently in the respiratory band. The FFT power means of physiological pulsation for two adjacent slices was significantly higher than in one-slice scans (RESP1 vs. RESP2; df = 5, p = 0.045). FEC and MRcVO confirmed the respiratory pulsations at the eye surface and retina. We conclude that in addition to the known cardiovascular pulsation, the human eye also has respiratory and vasomotor pulsation mechanisms, which are now amenable to study using non-invasive multimodal imaging of eye fluidics.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/physiology , Ophthalmoscopy , Retina/diagnostic imaging , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...