Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 163: 114864, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31330398

ABSTRACT

2-Methylisobornel (MIB) is one of the most widespread and problematic biogenic compounds causing taste-and-odor problems in freshwater. To investigate the causes of MIB production and develop models to predict the MIB concentration, we have applied empirical dynamic modeling (EDM), a nonlinear approach based on Chaos theory, to the long-term water quality dataset of Kamafusa Reservoir in Japan. The study revealed the dynamic nature of MIB production in the reservoir, and determined causal variables for MIB production, including water temperature, pH, transparency, light intensity, and Green Phormidium. Moreover, EDM established that the system is three-dimensional, and the approach found elevated nonlinearity (from 1.5 to 3) across the whole study period (1996-2015). By taking only one or two candidate predictors with varying time lags, multivariate models for predicting MIB production (best model: r = 0.83, p < 0.001, root mean squared error = 3.1 ng/L) were successfully established. The modeling approach used in this study is a powerful tool for causality identification and odor prediction, thus making important contributions to reservoir management.


Subject(s)
Water Pollutants, Chemical , Camphanes , Japan , Naphthols , Odorants , Water Supply
2.
Environ Pollut ; 127(3): 431-9, 2004.
Article in English | MEDLINE | ID: mdl-14638304

ABSTRACT

A sub-chronic toxicity experiment was conducted to examine tissue distribution and depuration of two microcystins (microcystin-LR and microcystin -RR) in the phytoplanktivorous filter-feeding silver carp during a course of 80 days. Two large tanks (A, B) were used, and in Tank A, the fish were fed naturally with fresh Microcystis viridis cells (collected from a eutrophic pond) throughout the experiment, while in Tank B, the food of the fish were M. viridis cells for the first 40 days and then changed to artificial carp feed. High Performance Liquid Chromatography (HPLC) was used to measure MC-LR and MC-RR in the M. viridis cells, the seston, and the intestine, blood, liver and muscle tissue of silver carp at an interval of 20 days. MC-RR and MC-LR in the collected Microcystis cells varied between 268-580 and 110-292 microg g(-1) DW, respectively. In Tank A, MC-RR and MC-LR varied between 41.5-99.5 and 6.9-15.8 microg g(-1) DW in the seston, respectively. The maximum MC-RR in the blood, liver and muscle of the fish was 49.7, 17.8 and 1.77 microg g(-1) DW, respectively. No MC-LR was detectable in the muscle and blood samples of the silver carp in spite of the abundant presence of this toxin in the intestines (for the liver, there was only one case when a relatively minor quantity was detected). These findings contrast with previous experimental results on rainbow trout. Perhaps silver carp has a mechanism to degrade MC-LR actively and to inhibit MC-LR transportation across the intestines. The depuration of MC-RR concentrations occurred slowly than uptakes in blood, liver and muscle, and the depuration rate was in the order of blood>liver>muscle. The grazing ability of silver carp on toxic cyanobacteria suggests an applicability of using phytoplanktivorous fish to counteract cyanotoxin contamination in eutrophic waters.


Subject(s)
Bacterial Toxins/pharmacokinetics , Carcinogens/pharmacokinetics , Carps/metabolism , Peptides, Cyclic/pharmacokinetics , Phytoplankton , Animals , Bacterial Toxins/toxicity , Carcinogens/toxicity , Eutrophication , Feeding Behavior , Marine Toxins , Microcystins , Peptides, Cyclic/toxicity , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...