Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Epigenetics ; 14(1): 115, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115961

ABSTRACT

BACKGROUND: Cystoscopy is the gold standard for bladder cancer detection, but is costly, invasive and has imperfect diagnostic accuracy. We aimed to identify novel and accurate DNA methylation biomarkers for non-invasive detection of bladder cancer in urine, with the potential to reduce the number of cystoscopies among hematuria patients. RESULTS: Biomarker candidates (n = 32) were identified from methylome sequencing of urological cancer cell lines (n = 16) and subjected to targeted methylation analysis in tissue samples (n = 60). The most promising biomarkers (n = 8) were combined into a panel named BladMetrix. The performance of BladMetrix in urine was assessed in a discovery series (n = 112), consisting of bladder cancer patients, patients with other urological cancers and healthy individuals, resulting in 95.7% sensitivity and 94.7% specificity. BladMetrix was furthermore evaluated in an independent prospective and blinded series of urine from patients with gross hematuria (n = 273), achieving 92.1% sensitivity, 93.3% specificity and a negative predictive value of 98.1%, with the potential to reduce the number of cystoscopies by 56.4%. CONCLUSIONS: We here present BladMetrix, a novel DNA methylation urine test for non-invasive detection of bladder cancer, with high accuracy across tumor grades and stages, and the ability to spare a significant number of cystoscopies among patients with gross hematuria.


Subject(s)
Urinary Bladder Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/urine , DNA Methylation , Hematuria/diagnosis , Hematuria/genetics , Humans , Prospective Studies , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/urine
2.
Clin Epigenetics ; 14(1): 77, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701814

ABSTRACT

BACKGROUND: Despite the efforts to describe the molecular landscape of esophageal adenocarcinoma (EAC) and its precursor lesion Barrett's esophagus (BE), discrepant findings are reported. Here, we investigated the prevalence of selected genetic (TP53 mutations and microsatellite instability (MSI) status) and epigenetic (DNA promoter hypermethylation of APC, CDKN2A, MGMT, TIMP3 and MLH1) modifications in a series of 19 non-dysplastic BE and 145 EAC samples. Additional biopsies from adjacent normal tissue were also evaluated. State-of-the-art methodologies and well-defined scoring criteria were applied in all molecular analyses. RESULTS: Overall, we confirmed frequent TP53 mutations among EAC (28%) in contrast to BE, which harbored no mutations. We demonstrated that MSI and MLH1 promoter hypermethylation are rare events, both in EAC and in BE. Our findings further support that APC, CDKN2A, MGMT and TIMP3 promoter hypermethylation is frequently seen in both lesions (21-89%), as well as in a subset of adjacent normal samples (up to 12%). CONCLUSIONS: Our study further enlightens the molecular background of BE and EAC. To the best of our knowledge, this is one of the largest studies addressing a targeted analysis of genetic and epigenetic modifications simultaneously across a combined series of non-dysplastic BE and EAC samples.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Adenocarcinoma/genetics , Barrett Esophagus/genetics , DNA Methylation , Disease Progression , Epigenesis, Genetic , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Humans
3.
Hepatology ; 75(1): 59-73, 2022 01.
Article in English | MEDLINE | ID: mdl-34435693

ABSTRACT

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is associated with increased risk of cholangiocarcinoma (CCA). Early and accurate CCA detection represents an unmet clinical need as the majority of patients with PSC are diagnosed at an advanced stage of malignancy. In the present study, we aimed at establishing robust DNA methylation biomarkers in bile for early and accurate diagnosis of CCA in PSC. APPROACH AND RESULTS: Droplet digital PCR (ddPCR) was used to analyze 344 bile samples from 273 patients with sporadic and PSC-associated CCA, PSC, and other nonmalignant liver diseases for promoter methylation of cysteine dioxygenase type 1, cannabinoid receptor interacting protein 1, septin 9, and vimentin. Receiver operating characteristic (ROC) curve analyses revealed high AUCs for all four markers (0.77-0.87) for CCA detection among patients with PSC. Including only samples from patients with PSC diagnosed with CCA ≤ 12 months following bile collection increased the accuracy for cancer detection, with a combined sensitivity of 100% (28/28) and a specificity of 90% (20/203). The specificity increased to 93% when only including patients with PSC with longtime follow-up (> 36 months) as controls, and remained high (83%) when only including patients with PSC and dysplasia as controls (n = 23). Importantly, the bile samples from the CCA-PSC ≤ 12 patients, all positive for the biomarkers, included both early-stage and late-stage CCA, different tumor growth patterns, anatomical locations, and carbohydrate antigen 19-9 levels. CONCLUSIONS: Using highly sensitive ddPCR to analyze robust epigenetic biomarkers, CCA in PSC was accurately detected in bile, irrespective of clinical and molecular features, up to 12 months before CCA diagnosis. The findings suggest a potential for these biomarkers to complement current detection and screening methods for CCA in patients with PSC.


Subject(s)
Bile Duct Neoplasms/diagnosis , Bile/chemistry , Biomarkers, Tumor/analysis , Cholangiocarcinoma/diagnosis , Cholangitis, Sclerosing/complications , Bile Duct Neoplasms/genetics , Biomarkers, Tumor/genetics , Cholangiocarcinoma/genetics , Cholangitis, Sclerosing/genetics , DNA Methylation , Early Detection of Cancer/methods , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Staging , Polymerase Chain Reaction , ROC Curve
4.
Int J Cancer ; 141(5): 967-976, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28542846

ABSTRACT

The prognostic value of CpG island methylator phenotype (CIMP) in colorectal cancer remains unsettled. We aimed to assess the prognostic value of this phenotype analyzing a total of 1126 tumor samples obtained from two Norwegian consecutive colorectal cancer series. CIMP status was determined by analyzing the 5-markers CAGNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 by quantitative methylation specific PCR (qMSP). The effect of CIMP on time to recurrence (TTR) and overall survival (OS) were determined by uni- and multivariate analyses. Subgroup analyses were conducted according to MSI and BRAF mutation status, disease stage, and also age at time of diagnosis (<60, 60-74, ≥75 years). Patients with CIMP positive tumors demonstrated significantly shorter TTR and worse OS compared to those with CIMP negative tumors (multivariate hazard ratio [95% CI] 1.86 [1.31-2.63] and 1.89 [1.34-2.65], respectively). In stratified analyses, CIMP tumors showed significantly worse outcome among patients with microsatellite stable (MSS, P < 0.001), and MSS BRAF mutated tumors (P < 0.001), a finding that persisted in patients with stage II, III or IV disease, and that remained significant in multivariate analysis (P < 0.01). Consistent results were found for all three age groups. To conclude, CIMP is significantly associated with inferior outcome for colorectal cancer patients, and can stratify the poor prognostic patients with MSS BRAF mutated tumors.


Subject(s)
Colorectal Neoplasms/genetics , CpG Islands/genetics , DNA Methylation/genetics , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/mortality , DNA Mutational Analysis , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Mutation , Phenotype , Polymerase Chain Reaction , Proportional Hazards Models , Proto-Oncogene Proteins B-raf/genetics , Risk Factors
5.
Sci Rep ; 6: 33936, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27671843

ABSTRACT

Diverging methylation frequencies are often reported for the same locus in the same disease, underscoring the need for limiting technical variability in DNA methylation analyses. We have investigated seven likely sources of variability at different steps of bisulfite PCR-based DNA methylation analyses using a fully automated quantitative methylation-specific PCR setup of six gene promoters across 20 colon cancer cell lines. Based on >15,000 individual PCRs, all tested parameters affected the normalized percent of methylated reference (PMR) differences, with a fourfold varying magnitude. Additionally, large variations were observed across the six genes analyzed. The highest variation was seen using single-copy genes as reference for normalization, followed by different amounts of template in the PCR, different amounts of DNA in the bisulfite reaction, and storage of bisulfite converted samples. Finally, when a highly standardized pipeline was repeated, the difference in PMR value for the same assay in the same cell line was on average limited to five (on a 0-100 scale). In conclusion, a standardized pipeline is essential for consistent methylation results, where parameters are kept constant for all samples. Nevertheless, a certain level of variation in methylation values must be expected, underscoring the need for careful interpretation of data.

6.
Hepatology ; 61(5): 1651-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25644509

ABSTRACT

UNLABELLED: Early detection of the highly aggressive malignancy cholangiocarcinoma (CCA) remains a challenge but has the potential to render the tumor curable by surgical removal. This study evaluates a biomarker panel for the diagnosis of CCA by DNA methylation analyses of biliary brush samples. The methylation status of 13 candidate genes (CDO1, CNRIP1, DCLK1, FBN1, INA, MAL, SEPT9, SFRP1, SNCA, SPG20, TMEFF2, VIM, and ZSCAN18) was investigated in 93 tissue samples (39 CCAs and 54 nonmalignant controls) using quantitative methylation-specific polymerase chain reaction. The 13 genes were further analyzed in a test series of biliary brush samples (15 CCAs and 20 nonmalignant primary sclerosing cholangitis controls), and the methylation status of the four best performing markers was validated (34 CCAs and 34 primary sclerosing cholangitis controls). Receiver operating characteristic curve analyses were used to evaluate the performance of individual biomarkers and the combination of biomarkers. The 13 candidate genes displayed a methylation frequency of 26%-82% in tissue samples. The four best-performing genes (CDO1, CNRIP1, SEPT9, and VIM) displayed individual methylation frequencies of 45%-77% in biliary brushes from CCA patients. Across the test and validation biliary brush series, this four-gene biomarker panel achieved a sensitivity of 85% and a specificity of 98%, with an area under the receiver operating characteristic curve of 0.944. CONCLUSION: We report a straightforward biomarker assay with high sensitivity and specificity for CCA, outperforming standard brush cytology, and suggest that the biomarker panel, potentially in combination with cytological evaluation, may improve CCA detection, particularly among primary sclerosing cholangitis patients.


Subject(s)
Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , DNA Methylation , Genetic Markers , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/pathology , Humans , Reproducibility of Results
7.
PLoS One ; 9(9): e104249, 2014.
Article in English | MEDLINE | ID: mdl-25226156

ABSTRACT

Epigenetic modifications and DNA methylation in particular, have been recognized as important mechanisms to alter gene expression in malignant cells. Here, we identified candidate genes which were upregulated after an epigenetic treatment of B-cell lymphoma cell lines (Burkitt's lymphoma, BL; Follicular lymphoma, FL; Diffuse large B-cell lymphoma, DLBCL activated B-cell like, ABC; and germinal center like, GCB) and simultaneously expressed at low levels in samples from lymphoma patients. Qualitative methylation analysis of 24 candidate genes in cell lines revealed five methylated genes (BMP7, BMPER, CDH1, DUSP4 and LRP12), which were further subjected to quantitative methylation analysis in clinical samples from 59 lymphoma patients (BL, FL, DLBCL ABC and GCB; and primary mediastinal B-cell lymphoma, PMBL). The genes LRP12 and CDH1 showed the highest methylation frequencies (94% and 92%, respectively). BMPER (58%), DUSP4 (32%) and BMP7 (22%), were also frequently methylated in patient samples. Importantly, all gene promoters were unmethylated in various control samples (CD19+ peripheral blood B cells, peripheral blood mononuclear cells and tonsils) as well as in follicular hyperplasia samples, underscoring a high specificity. The combination of LRP12 and CDH1 methylation could successfully discriminate between the vast majority of the lymphoma and control samples, emphasized by receiver operating characteristic analysis with a c-statistic of 0.999. These two genes represent promising epigenetic markers which may be suitable for monitoring of B-cell lymphoma.


Subject(s)
DNA Methylation , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Lymphoma, B-Cell/genetics , Biomarkers, Tumor/genetics , Case-Control Studies , Cell Line, Tumor , CpG Islands , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, B-Cell/diagnosis , Promoter Regions, Genetic , ROC Curve , Sequence Analysis, DNA
9.
Epigenetics ; 9(3): 428-36, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24362313

ABSTRACT

Genes with altered DNA methylation can be used as biomarkers for cancer detection and assessment of prognosis. Here we analyzed the methylation status of a colorectal cancer biomarker panel (CNRIP1, FBN1, INA, MAL, SNCA, and SPG20) in 97 cancer cell lines, derived from 17 different cancer types. Interestingly, the genes were frequently methylated also in hematological cancer types and were therefore subjected to analyses in primary tumor samples from the major types of non-Hodgkin lymphomas (NHL) and in healthy controls. In total, the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 were methylated in 53%, 23%, 52%, 69%, 97%, and 92% of the tumor samples, respectively, and were unmethylated in all healthy controls. With the exception of a single tumor sample, a correct prediction of lymphoma or normal sample was made in a blinded analysis of the validation series using a combination of SNCA and SPG20. The combined ROC-curve analysis of these genes resulted in an area under the curve of 0.999 (P = 4.2 × 10(-18)), and a sensitivity and specificity of 98% and 100%, respectively, across the test and validation series. Interestingly, the promoter methylation of CNRIP1 was associated with decreased overall survival in diffuse large B-cell lymphoma (DLBCL) (P = 0.03).   In conclusion, our results demonstrate that SNCA and SPG20 methylation might be suitable for early detection and monitoring of NHL. Furthermore, CNRIP1 could potentially be used as a prognostic factor in DLBCL.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , DNA Methylation , Lymphoma, Non-Hodgkin/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Case-Control Studies , Cell Cycle Proteins , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Female , Humans , Lymphoma, Non-Hodgkin/diagnosis , Male , Middle Aged , Prognosis , Promoter Regions, Genetic , Proteins/genetics , alpha-Synuclein/genetics
10.
PLoS One ; 8(11): e79602, 2013.
Article in English | MEDLINE | ID: mdl-24260260

ABSTRACT

Epigenetic alterations of gene expression are important in the development of cancer. In this study, we identified genes which are epigenetically altered in major lymphoma types. We used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified 233 genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples (n = 480) when compared to normal B cells (n = 5). The top 30 genes were further analyzed by methylation specific PCR (MSP) in 18 lymphoma cell lines. Seven of the genes were methylated in more than 70% of the cell lines and were further subjected to quantitative MSP in 37 B-cell lymphoma patient samples (diffuse large B-cell lymphoma (activated B-cell like and germinal center B-cell like subtypes), follicular lymphoma and Burkitt`s lymphoma) and normal B lymphocytes from 10 healthy donors. The promoters of DSP, FZD8, KCNH2, and PPP1R14A were methylated in 28%, 67%, 22%, and 78% of the 36 tumor samples, respectively, but not in control samples. Validation using a second series of healthy donor controls (n = 42; normal B cells, peripheral blood mononuclear cells, bone marrow, tonsils and follicular hyperplasia) and fresh-frozen lymphoma biopsies (n = 25), confirmed the results. The DNA methylation biomarker panel consisting of DSP, FZD8, KCNH2, and PPP1R14A was positive in 89% (54/61) of all lymphomas. Receiver operating characteristic analysis to determine the discriminative power between lymphoma and healthy control samples showed a c-statistic of 0.96, indicating a possible role for the biomarker panel in monitoring of lymphoma patients.


Subject(s)
Lymphoma, B-Cell/genetics , Lymphoma, Non-Hodgkin/genetics , Cell Line, Tumor , DNA Methylation/genetics , Desmoplakins/genetics , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/genetics , Humans , Intracellular Signaling Peptides and Proteins , Muscle Proteins , Phosphoprotein Phosphatases/genetics , Receptors, Cell Surface/genetics
11.
Epigenetics ; 7(11): 1249-57, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22983262

ABSTRACT

Cholangiocarcinoma is notoriously difficult to diagnose, and the mortality rate is high due to late clinical presentation. CpG island promoter methylation is frequently seen in cancer development. In the present study, we aimed at identifying novel epigenetic biomarkers with the potential to improve the diagnostic accuracy of cholangiocarcinoma. Microarray data analyses of cholangiocarcinoma cell lines treated with epigenetic drugs and their untreated counterparts were compared with previously published gene expression profiles of primary tumors and with non-malignant controls. Genes responding to the epigenetic treatment that were simultaneously downregulated in primary cholangiocarcinoma compared with controls (n = 43) were investigated for their promoter methylation status in cancer cell lines from the gastrointestinal tract. Genes commonly methylated in cholangiocarcinoma cell lines were subjected to quantitative methylation-specific polymerase chain reaction in a total of 93 clinical samples (cholangiocarcinomas and non-malignant controls). CDO1, DCLK1, SFRP1 and ZSCAN18, displayed high methylation frequencies in primary tumors and were unmethylated in controls. At least one of these four biomarkers was positive in 87% of the tumor samples, with a specificity of 100%. In conclusion, the novel methylation-based biomarker panel showed high sensitivity and specificity for cholangiocarcinoma. The potential of these markers in early diagnosis of this cancer type should be further explored.


Subject(s)
Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Biomarkers, Tumor/genetics , Cholangiocarcinoma/genetics , Bile Duct Neoplasms/diagnosis , Biomarkers, Tumor/analysis , Case-Control Studies , Cell Line, Tumor , Cholangiocarcinoma/diagnosis , CpG Islands , Cysteine Dioxygenase/genetics , Cysteine Dioxygenase/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Doublecortin-Like Kinases , Down-Regulation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sequence Analysis, DNA
12.
J Transl Med ; 10: 36, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22390413

ABSTRACT

BACKGROUND: Methylation of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene promoter is a favorable prognostic factor in glioblastoma patients. However, reported methylation frequencies vary significantly partly due to lack of consensus in the choice of analytical method. METHOD: We examined 35 low- and 99 high-grade gliomas using quantitative methylation specific PCR (qMSP) and pyrosequencing. Gene expression level of MGMT was analyzed by RT-PCR. RESULTS: When examined by qMSP, 26% of low-grade and 37% of high-grade gliomas were found to be methylated, whereas 97% of low-grade and 55% of high-grade gliomas were found methylated by pyrosequencing. The average MGMT gene expression level was significantly lower in the group of patients with a methylated promoter independent of method used for methylation detection. Primary glioblastoma patients with a methylated MGMT promoter (as evaluated by both methylation detection methods) had approximately 5 months longer median survival compared to patients with an unmethylated promoter (log-rank test; pyrosequencing P = .02, qMSP P = .06). One third of the analyzed samples had conflicting methylation results when comparing the data from the qMSP and pyrosequencing. The overall survival analysis shows that these patients have an intermediate prognosis between the groups with concordant MGMT promoter methylation results when comparing the two methods. CONCLUSION: In our opinion, MGMT promoter methylation analysis gives sufficient prognostic information to merit its inclusion in the standard management of patients with high-grade gliomas, and in this study pyrosequencing came across as the better analytical method.


Subject(s)
DNA Methylation/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioma/genetics , Polymerase Chain Reaction/methods , Promoter Regions, Genetic , Sequence Analysis, DNA/methods , Temperature , Tumor Suppressor Proteins/genetics , DNA Methylation/drug effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Gene Expression Regulation, Neoplastic , Glioma/drug therapy , Glioma/radiotherapy , Humans , Survival Analysis , Temozolomide
13.
Epigenetics ; 6(5): 602-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21406965

ABSTRACT

Gap junctions are specialized plasma membrane domains consisting of channels formed by members of the connexin protein family. Gap junctional intercellular communication is often lost in cancers due to aberrant localization or downregulation of connexins, and connexins are therefore suggested to act as tumor suppressor genes in various tissues. The aim of this study was to investigate the expression pattern and DNA promoter methylation status of connexins in colorectal cancer. Expression of six (GJA1, GJA9, GJB1, GJB2, GJC1 and GJD3) connexin genes was detected in normal colonic tissue samples. GJC1 expression was reduced in colorectal carcinomas compared to normal tissue samples. All analyzed connexins were hypermethylated in colon cancer cell lines, although at various frequencies. GJA4, GJB6 and GJD2 were hypermethylated in 60% (29/48), 25% (12/48) and 96% (46/48) of primary colorectal carcinomas, respectively. However, the methylation status was not associated with gene expression. GJC1 has two alternative promoters, which were methylated in 42% (32/76) and 38% (25/65) of colorectal tumors, and in none of the normal mucosa samples. Expression of GJC1 was significantly lower in methylated compared with unmethylated samples (p < 0.01) and was restored in cell lines treated with the demethylating drug 5-aza-2'deoxycytidine. Taken together, DNA hypermethylation of the promoter region of GJC1, encoding connexin45, is an important mechanism in silencing gene expression in colorectal cancer.


Subject(s)
Colorectal Neoplasms/genetics , Connexins/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic/genetics , Adult , Aged , Aged, 80 and over , Cell Communication/genetics , Cell Line, Tumor , Connexin 26 , CpG Islands/genetics , Epigenomics , Female , Gap Junctions/genetics , Gene Silencing , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...