Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(14): 3772-3778, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38552646

ABSTRACT

Self-assembled quantum dots (QDs) are potential candidates for photoelectric and photovoltaic devices, because of their discrete energy levels. The characterization of QDs at the atomic level using a multimodal approach is crucial to improving device performance because QDs are nanostructures with highly correlated structural parameters. In this study, scanning transmission electron microscopy, geometric phase analysis, and atom probe tomography were employed to characterize structural parameters such as the shape, strain, and composition of self-assembled InAs-QDs with InGaAlAs spacer layers. The measurements revealed characteristic AlAs-rich regions above the QDs and InAs-rich regions surrounding the QD columns, which can be explained by the relationship between the effect of strain and surface curvature around the QD. The methodology described in this study accelerates the development of future QD devices because its multiple perspectives reveal phenomena such as atomic-scale segregations and allow for more detailed discussions of the mechanisms of these phenomena.

2.
Microsc Microanal ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38442209

ABSTRACT

The automation of the atom probe tomography (APT) tip preparation using a focused ion beam (FIB) with a scanning electron microscopy (SEM) dual-beam system will certainly contribute to systematic APT research with higher throughput and reliability. While our previous work established a method to prepare tips with a specified tip curvature and taper angle automatically, by using script-controlled FIB/SEM, the technique has been expanded to automated "site-specific" tip preparation in the current work. The improved procedure can automatically detect not only the tip shape but also the interface position in the tip; thus, the new function allows for control of the tip apex position. In other words, automated "site-specific" tip preparations are possible. The details of the automation procedure and some experimental demonstrations, that is, a Pt cap on Si, InGaN-based MQWs, and a p-n junction of GaAs, are presented.

4.
Ultramicroscopy ; 247: 113704, 2023 May.
Article in English | MEDLINE | ID: mdl-36822070

ABSTRACT

Atom probe tomography (APT) has become a popular technique for microstructural analysis of a wide range of alloys and devices over the past two decades owing to the employment of laser-assisted field evaporation and the development of site-specific tip preparation using a focused ion beam (FIB) with a scanning electron microscopy (SEM) system. In laser-assisted field evaporation, laser irradiation conditions largely influence mass resolution; therefore, recent commercial APT instruments allow strict control of the analysis conditions. However, the mass resolution is affected not only by the laser condition but also by the thermal conductivity of the material and the tip shape. In addition, it is also important to keep the tip shape constant in order to obtain tomography data with good reproducibility since the analytical volume highly depends on the tip shape. In this study, we have developed a method to fabricate the tip with the desired shape automatically by using a script-controlled FIB-SEM system, which has traditionally depended on the skill of the FIB-SEM operator. The tip shape was then intentionally changed by using this method, and its effect on the APT data is also discussed.

5.
Microscopy (Oxf) ; 72(4): 343-352, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-36420894

ABSTRACT

This paper proposes a method that provides a phase image related to the demagnetization field (Hd) within a thin-foil permanent magnet using electron holography. The observation of Hd remains a significant challenge because electron holography in principle allows only imaging of the magnetic flux density (B), which is a mixture of the contributions from magnetization (M), stray magnetic field (Hs) outside of the specimen and Hd inside of the specimen. The phase map approximating Hd, which was determined by processing of the electron holography observation from a Nd2Fe14B single-crystalline specimen, showed a good agreement with the prediction by micromagnetic theory. With respect to permanent magnets, this method can be applied to examinations about the coercivity mechanism, which is sensitive to the demagnetization field. Graphical Abstract.

6.
Nano Lett ; 22(17): 6930-6935, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36048741

ABSTRACT

The compositional and structural investigations of threading dislocations (TDs) in InGaN/GaN multiple quantum wells were carried out using correlative transmission electron microscopy (TEM) and atom probe tomography (APT). The correlative TEM/APT analysis on the same TD reveals that the indium atoms are diffused along the TD and its concentration decreases with distance from the InGaN layer. On the basis of the results, we directly observed that the indium atoms originating from the InGaN layer diffuse toward the epitaxial GaN surface through the TD, and it is considered to have occurred via the pipe diffusion mechanism induced by strain energy relaxation.

8.
Sci Technol Adv Mater ; 22(1): 386-403, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34121927

ABSTRACT

Physically, the coercivity of permanent magnets should scale with the anisotropy field of ferromagnetic compounds, H A; however, the typical coercivity values of commercial polycrystalline sintered magnets are only ~0.2 H A, which is known as Brown's paradox. Recent advances in multi-scale microstructure characterizations using focused ion beam scanning electron microscope (FIB/SEM), aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), and atom probe tomography (APT) revealed detailed microstructural features of commercial and experimental Nd-Fe-B magnets. These investigations suggest the magnetism of a thin layer formed along grain boundaries (intergranular phase) is a critical factor that influences the coercivity of polycrystalline magnets. To determine the magnetism of the thin intergranular phase, soft X-ray magnetic circular dichroism and electron holography play critical roles. Large-scale micromagnetic simulations using the models that are close to real microstructure incorporating the recent microstructure characterization results gave insights on how the coercivity and its thermal stability is influenced by the microstructures. Based on these new findings, coercivity of Nd-Fe-B magnets is being improved to its limit. This review replies to the most frequently asked questions about the coercivity of Nd-Fe-B permanent magnets based on our recent studies.

9.
Acta Biomater ; 120: 91-103, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32927090

ABSTRACT

Bone-like materials comprise carbonated-hydroxyapatite nanocrystals (c-Ap) embedding a fibrillar collagen matrix. The mineral particles stiffen the nanocomposite by tight attachment to the protein fibrils creating a high strength and toughness material. The nanometer dimensions of c-Ap crystals make it very challenging to measure their mechanical properties. Mineral in bony tissues such as dentine contains 2~6 wt.% carbonate with possibly different elastic properties as compared with crystalline hydroxyapatite. Here we determine strain in biogenic apatite nanocrystals by directly measuring atomic deformation in pig dentine before and after removing carbonate. Transmission electron microscopy revealed the platy 3D morphology while atom probe tomography revealed carbon inside the calcium rich domains. High-energy X-ray diffraction in combination with in situ hydrostatic pressurization quantified reversible c-Ap deformations. Crystal strains differed between annealed and ashed (decarbonated) samples, following 1 or 10 h heating at 250 °C or 550 °C respectively. Measured bulk moduli (K) and a-/c-lattice deformation ratios (η) were used to generate synthetic Ksyn and ηsyn identifying the most likely elastic constants C33 and C13 for c-Ap. These were then used to calculate the nanoparticle elastic moduli. For ashed samples, we find an average E11=107 GPa and E33 =128 GPa corresponding to ~5% and ~17% stiffening of the a-/c-axes of the nanocrystals as compared with the biogenic nanocrystals in annealed samples. Ashed samples exhibit ~10% lower Poisson's ratios as compared with the 0.25~0.36 range of carbonated apatite. Carbonate in c-Ap may therefore serve for tuning local deformability within bony tissues. STATEMENT OF SIGNIFICANCE: Carbonated apatite nanoparticles, typical for bony tissues, stiffen the network of collagen fibrils. However, it is not known if the biogenic apatite mechanical (elastic) properties differ from those of geologic mineral counterparts. Indeed the tiny dimensions and variable carbonate composition may have strong effects on deformation resistance. The present study provides experimental measurements of the elastic constants which we use to estimate Young's moduli and Poisson's ratio values. Comparison between ashed and annealed dentine samples quantifies the properties of both carbonated and decarbonated apatite nanocrystals. The results reveal fundamental attributes of bony mineral and showcase the additive advantages of combining X-ray diffraction with in situ hydrostatic compression, backed by atom probe and transmission electron microscopy tomography.


Subject(s)
Apatites , Nanoparticles , Animals , Carbonates , Dentin , Swine , X-Ray Diffraction
10.
Microsc Microanal ; 27(1): 1-11, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33280630

ABSTRACT

The carbon (C) ratios, namely the atomic ratios of C/(C + M), in nano-sized coherent MC precipitates (M = Ti, Nb) with the NaCl-type (B1) structure in ferritic steels, which had been isothermally aged at 580 °C, were investigated using atom probe tomography (APT). Considering the influences of the trajectory aberration, detection loss, and peak overlap, we determined the C ratios to be ~0.40 and ~0.45 for an equivalent volume diameter of 1.5­5 nm and 1­5 nm for the TiC and NbC precipitates, respectively, suggesting that there is a considerable fraction of C vacancies in both nano-sized precipitates. The apparent C ratios show significant scatter with decreasing particle size, while the apparent mean C ratios of very fine TiC particles, smaller than 1.5 nm, decreased with decreasing particle size. With the use of one of the latest APT instruments with a high detection efficiency, the scattering in the apparent C ratios was reduced because the counting statistics were improved; however, the artificial enrichment of C atoms to particular crystallographic directions of ferrite hindered the determination of the C ratio for very fine TiC particles smaller than 1.5 nm.

11.
Sci Rep ; 10(1): 12163, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32699329

ABSTRACT

A hierarchical microstructure strengthened high entropy superalloy (HESA) with superior cost specific yield strength from room temperature up to 1,023 K is presented. By phase transformation pathway through metastability, HESA possesses a hierarchical microstructure containing a dispersion of nano size disordered FCC particles inside ordered L12 precipitates that are within the FCC matrix. The average tensile yield strength of HESA from room temperature to 1,023 K could be 120 MPa higher than that of advanced single crystal superalloy, while HESA could still exhibit an elongation greater than 20%. Furthermore, the cost specific yield strength of HESA can be 8 times that of some superalloys. A template for lighter, stronger, cheaper, and more ductile high temperature alloy is proposed.

12.
Sci Adv ; 6(10): eaay2324, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32181344

ABSTRACT

We have studied the charge to spin conversion in Bi1-x Sb x /CoFeB heterostructures. The spin Hall conductivity (SHC) of the sputter-deposited heterostructures exhibits a high plateau at Bi-rich compositions, corresponding to the topological insulator phase, followed by a decrease of SHC for Sb-richer alloys, in agreement with the calculated intrinsic spin Hall effect of Bi1-x Sb x . The SHC increases with increasing Bi1-x Sb x thickness before it saturates, indicating that it is the bulk of the alloy that predominantly contributes to the generation of spin current; the topological surface states, if present, play little role. Unexpectedly, the SHC is found to increase with increasing temperature, following the trend of carrier density. These results suggest that the large SHC at room temperature, with a spin Hall efficiency exceeding 1 and an extremely large spin current mobility, is due to increased number of thermally excited Dirac-like electrons in the L valley of the narrow gap Bi1-x Sb x alloy.

13.
Sci Rep ; 9(1): 11702, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31406235

ABSTRACT

Recently, we have found that fully recrystallized ultrafine-grained (UFG) microstructures could be realized in a commercial precipitation-hardened Magnesium (Mg) alloy. The UFG specimens exhibited high strength and large ductility under tensile test, but underlying mechanisms for good mechanical properties remained unclear. In this study, we have carried out systematic observations of deformation microstructures for revealing the influence of grain size on the change of dominant deformation modes. We found that plastic deformation of conventionally coarse-grained specimen was predominated by {0001} <11-20> slip and {10-12} <10-11> twinning, and the quick decrease of work-hardening rate was mainly due to the early saturation of deformation twins. For the UFG specimens, {10-12} <10-11> twinning was dramatically suppressed, while non-basal slip systems containing component of Burgers vector were activated, which contributed significantly to the enhanced work-hardening rate leading to high strength and large ductility. It was clarified by this study that limited ductility of hexagonal Mg alloys could be overcome by activating unusual slip systems ( dislocations) in fully recrystallized UFG microstructures.

15.
Sci Rep ; 8(1): 10362, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29985395

ABSTRACT

Voltage-controlled magnetic anisotropy (VCMA) in an epitaxially grown Fe/Fe1-xCox/Pd/MgO system was investigated using spin-wave spectroscopy. The spin-wave resonant frequency linearly depended on the bias-voltage. The resonant-frequency shift increased with the Co fraction in Fe1-xCox/Pd. We achieved a VCMA of approximately 250 fJ/Vm at the Co/Pd/MgO region.

16.
Nanotechnology ; 29(33): 335204, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-29846185

ABSTRACT

While it has multiple advantageous optoelectronic and piezoelectric properties, the application of zinc oxide has been limited by the lack of a stable p-type dopant. Recently, it was discovered that antimony doping can lead to stable p-type doping in ZnO, but one curious side effect of the doping process is the formation of voids inside the nanowire. While previously used as a signifier of successful doping, up until now, little research has been performed on these structures themselves. In this work, the effect of annealing on the size and microstructure of the voids was investigated using TEM and XRD, finding that the voids form around a region of Zn7Sb2O12. Furthermore, using Raman spectroscopy, a new peak associated with successful doping was identified. The most surprising finding, however, was the presence of water trapped inside the nanowire, showing that this is actually a composite structure. Water was initially discovered in the nanowires using atom probe tomography, and verified using Raman spectroscopy.

18.
Nat Commun ; 8: 15848, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28643780

ABSTRACT

Electric fields at interfaces exhibit useful phenomena, such as switching functions in transistors, through electron accumulations and/or electric dipole inductions. We find one potentially unique situation in a metal-dielectric interface in which the electric field is atomically inhomogeneous because of the strong electrostatic screening effect in metals. Such electric fields enable us to access electric quadrupoles of the electron shell. Here we show, by synchrotron X-ray absorption spectroscopy, electric field induction of magnetic dipole moments in a platinum monatomic layer placed on ferromagnetic iron. Our theoretical analysis indicates that electric quadrupole induction produces magnetic dipole moments and provides a large magnetic anisotropy change. In contrast with the inability of current designs to offer ultrahigh-density memory devices using electric-field-induced spin control, our findings enable a material design showing more than ten times larger anisotropy energy change for such a use and highlight a path in electric-field control of condensed matter.

19.
Adv Mater ; 26(37): 6483-90, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25123705

ABSTRACT

A 4-fold-symmetry hexagonal Ru emerging in epitaxial MgO/Ru/Co2 FeAl/MgO heterostructures is reported, in which an approximately Ru(022¯3) growth attributes to the lattice matching between MgO, Ru, and Co2 FeAl. Perpendicular magnetic anisotropy of the Co2 FeAl/MgO interface is substantially enhanced. The magnetic tunnel junctions (MTJs) incorporating this structure give rise to the largest tunnel magnetoresistance for perpendicular MTJs using low damping Heusler alloys.

20.
Adv Mater ; 24(48): 6530-5, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23108704

ABSTRACT

Anisotropic Nd(2) Fe(14) B/Fe(67) Co(33) nanocomposite thin films are successfully fabricated. The multilayer composite films comprise Nd-rich shell-enveloped Nd(2) Fe(14) B grains and a Fe(67) Co(33) phase. The strong (001) texture of the Nd(2) Fe(14) B grains and the presence of exchange-coupled Fe(67) Co(33) lead to a high remanence and the presence of the Nd-rich shell gives rise to a high coercivity. The unique nanocomposite microstructure provides hints for developing rare-earth-lean high-performance magnets.


Subject(s)
Boron/chemistry , Cobalt/chemistry , Energy-Generating Resources , Iron/chemistry , Nanocomposites/chemistry , Neodymium/chemistry , Anisotropy
SELECTION OF CITATIONS
SEARCH DETAIL
...