Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 88(13): 6797-804, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27237618

ABSTRACT

The current work describes the implementation of electro membrane extraction (EME) into an autosampler for high-throughput analysis of samples by EME-LC-MS. The extraction probe was built into a luer lock adapter connected to a HTC PAL autosampler syringe. As the autosampler drew sample solution, analytes were extracted into the lumen of the extraction probe and transferred to a LC-MS system for further analysis. Various parameters affecting extraction efficacy were investigated including syringe fill strokes, syringe pull up volume, pull up delay and volume in the sample vial. The system was optimized for soft extraction of analytes and high sample throughput. Further, it was demonstrated that by flushing the EME-syringe with acidic wash buffer and reverting the applied electric potential, carry-over between samples can be reduced to below 1%. Performance of the system was characterized (RSD, <10%; R(2), 0.994) and finally, the EME-autosampler was used to analyze in vitro conversion of methadone into its main metabolite by rat liver microsomes and for demonstrating the potential of known CYP3A4 inhibitors to prevent metabolism of methadone. By making use of the high extraction speed of EME, a complete analytical workflow of purification, separation, and analysis of sample could be achieved within only 5.5 min. With the developed system large sequences of samples could be analyzed in a completely automated manner. This high degree of automation makes the developed EME-autosampler a powerful tool for a wide range of applications where high-throughput extractions are required before sample analysis.

2.
ChemMedChem ; 7(10): 1808-14, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22927258

ABSTRACT

Na(+)-coupled HCO(3)(-) transporters (NBCs) mediate the transport of bicarbonate ions across cell membranes and are thus ubiquitous regulators of intracellular pH. NBC dysregulation is associated with a range of diseases; for instance, NBCn1 is strongly up-regulated in a model of ErbB2-dependent breast cancer, a malignant and widespread cancer with no targeted treatment options, and single-nucleotide polymorphisms in NBCn1 genetically link to breast cancer development and hypertension. The N-cyanosulfonamide S0859 has been shown to selectively inhibit NBCs, and its availability on the gram scale is therefore of significant interest to the scientific community. Herein we describe a short and efficient synthesis of S0859 with an overall yield of 45 % from commercially available starting materials. The inhibitory effect of S0859 on recovery of intracellular pH after an acid load was verified in human and murine cancer cell lines in Ringer solutions. However, S0859 binds very strongly to components in plasma, and accordingly, measurements on isolated murine tissues showed no effect of S0859 at concentrations up to 50 µM.


Subject(s)
Benzamides/chemical synthesis , Sodium-Bicarbonate Symporters/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Benzamides/chemistry , Benzamides/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Hydrogen-Ion Concentration/drug effects , MCF-7 Cells , Mice , Sodium-Bicarbonate Symporters/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology
3.
Electrophoresis ; 30(16): 2853-61, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19650045

ABSTRACT

A dual CD-CE method for chiral separation of enantiomers of pioglitazone, rosiglitazone and balaglitazone was investigated for the purpose of optimizing the chiral separation. In a previous work a dual CD chiral CE method was used for investigation of glitazone compounds in drug substance and pharmaceutical formulation and the studies showed that all studied glitazones were racemic mixtures. This CE method could separate the enantiomers with a resolution (R(S)) of about 3. However, another study on single glitazone enantiomers pointed out that a higher R(S) is needed to achieve more accurate results for separation of a small amount of one enantiomer in the presence of a high amount of the other enantiomers. The focus of this investigation was thus directed toward the effect of CDs and the pH of the running buffer to achieve a better enantioseparation. Initially CE systems with each of heptakis(2,6-di-O-methyl)-beta-CD (DM-beta-CD) and heptakis(6-sulfobutylether)-beta-CD (SB-beta-CD) as single CD added were investigated at three different pH values (2.5, 5.0 and 9.3). After having chosen the best of these three pH values a dual CD system was further investigated and optimized. The optimization work was then focused on the concentration of the two CDs and the pH of the running buffer and was performed using factorial design experiments. A mixture of a DM-beta-CD and SB-beta-CD was found to be optimal and necessary to achieve enantioseparation with sufficiently high R(S). In order to further verify the importance of the SB-beta-CD, a CE system with the DM-beta-CD added and substitution or partial substitution of the SB-beta-CD by SDS was studied for comparison. (1)H-NMR studies were performed to get a more detailed understanding of the interactions between the glitazones and the CDs used.The optimized dual CD-CE method for chiral separation of the enantiomers of pioglitazone, rosiglitazone and balaglitazone using a running buffer containing 50 mM borate buffer pH 9.7, 12 mM of SB-beta-CD and 3 mM of DM-beta-CD provided a high R(S) (R(S) between 5.5 and 8.8).


Subject(s)
Cyclodextrins/chemistry , Electrophoresis, Capillary/methods , Thiazolidinediones/isolation & purification , Hydrogen-Ion Concentration , Nuclear Magnetic Resonance, Biomolecular/methods , Sodium Dodecyl Sulfate , Stereoisomerism
4.
J Pharm Biomed Anal ; 34(2): 325-32, 2004 Feb 04.
Article in English | MEDLINE | ID: mdl-15013146

ABSTRACT

A liquid chromatographic-tandem mass spectrometric method using an Xterra MS C(18) chromatographic column ( 100 mm x 2.1 mm i.d., 3.5microm) that allows complete separation of oxytetracycline (OTC) and the impurities: 4-epi-oxytetracycline (EOTC), tetracycline (TC), 4-epi-tetracycline (ETC), 2-acetyl-2-decarboxamido-oxytetracycline (ADOTC), alpha-apo-oxytetracycline (alpha-AOTC) and beta-apo-oxytetracycline (beta-AOTC) was developed. Gradient elution was used and calibration curves were obtained using the scan mode selected reaction monitoring (SRM). Acceptable correlations were obtained for OTC, TC, EOTC and ADOTC whereas the correlations of alpha-AOTC and beta-AOTC were less accurate resulting in higher limits of quantification (LOQ) and limits of detection (LOD) relative to the other compounds. The intraday and interday accuracy varied for all the compounds from 90 to 112% and the intraday and interday precision were lower than 7.1%. The method was applied for analysis of commercial available ointments containing OTC resulting in an acceptable quantification of OTC and the impurities in the drug preparations. The advantage of this method compared to the other separation methods is an empty separation window right after the large peak corresponding to OTC in the chromatogram, which facilitates an accurate determination of ADOTC and the other impurities.


Subject(s)
Drug Contamination , Oxytetracycline/analysis , Chromatography, High Pressure Liquid/methods , Drug Evaluation, Preclinical/methods , Ointments/analysis , Ointments/chemistry , Oxytetracycline/chemistry
5.
Anal Biochem ; 312(2): 148-56, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12531199

ABSTRACT

Xenobiotic carboxylic acids, that via their metabolites covalently modify proteins, have been associated with serious side effects in man. Such reactive metabolites may be acyl glucuronides or alternatively, the corresponding acyl-CoA thioesters. In this study, the reaction of a model xenobiotic acyl-CoA, the naproxen-CoA, with human serum albumin (HSA), was characterized by high-performance liquid chromatography employing fluorescence and mass spectrometric detection. One mM naproxen-CoA was incubated for 6h with HSA (0.45 mM) at 37 degrees C in a 0.1M phosphate buffer (pH 7.4). The tryptic digest of the reduced and alkylated protein was analyzed in order to identify the amino acids in the sequence that were covalently modified with naproxen. Fluorescent peptides, that represented naproxen-modified peptides, were characterized using HPLC-MS-MS and HPLC-MS in zoom scan mode, which provided information on the structure and the charge of the modified peptides. The naproxen-CoA reacted predominantly with lysine 199, lysine 541, and lysine 351, which was in agreement with the binding pattern that has previously been reported for the reactive acyl glucuronides and their reaction with HSA.


Subject(s)
Acyl Coenzyme A/metabolism , Amino Acids/blood , Amino Acids/metabolism , Naproxen/metabolism , Serum Albumin/chemistry , Serum Albumin/metabolism , Acyl Coenzyme A/chemistry , Amino Acid Sequence , Catalytic Domain , Chromatography, High Pressure Liquid , Fluorescence , Humans , Mass Spectrometry , Molecular Sequence Data , Molecular Weight , Naproxen/analogs & derivatives , Naproxen/chemistry
6.
J Pharm Biomed Anal ; 29(1-2): 7-15, 2002 Jun 20.
Article in English | MEDLINE | ID: mdl-12062660

ABSTRACT

Drugs may be metabolised to reactive electrophilic species that spontaneously react with proteins. The presence of such drug-protein adducts has been associated with drug toxicity. In this study, the reactivity of the major metabolite of naproxen--the 1-beta-O-glucuronide (Nap-GlcU)--was compared to the corresponding naproxen coenzyme A (Nap-CoA) thioester. The reactivity of the two metabolites was assessed in vitro in a phosphate buffer (pH 7.4; 0.1 M) at 37 degrees C towards the model bionucleophiles glutathione and human serum albumin (HSA). The reaction between the electrophilic species (Nap-GlcU and Nap-CoA) and glutathione forming the Nap-glutathione conjugate was monitored using LC-MS-MS and LC-UV, respectively. It was shown that Nap-CoA resulted in an approximate 100-fold higher formation of Nap-glutathione conjugate than Nap-GlcU. The presence of Nap-CoA also resulted in acylated HSA with a rate and a yield that was significantly higher than reported for Nap-GlcU. In summary, the data suggest that CoA metabolites may be more reactive species than acyl glucuronides that previously have been associated with severe drug related side effects in vivo.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Chemistry, Pharmaceutical , Coenzyme A/metabolism , Glucuronides/metabolism , Naproxen/analogs & derivatives , Naproxen/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chromatography, High Pressure Liquid , Coenzyme A/chemistry , Drug Interactions , Glucuronides/chemistry , Glutathione/chemistry , Glutathione/metabolism , Humans , Naproxen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...