Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664300

ABSTRACT

Traumatic brain injury (TBI) is a prevalent and debilitating condition, which often leads to the development of post-traumatic epilepsy (PTE), a condition that yet lacks preventive strategies. Biperiden, an anticholinergic drug, is a promising candidate that has shown efficacy in murine models of PTE. MicroRNAs (miRNAs), small regulatory RNAs, can help in understanding the biological basis of PTE and act as TBI- and PTE-relevant biomarkers that can be detected peripherally, as they are present in extracellular vesicles (EVs) that cross the blood-brain barrier. This study aimed to investigate miRNAs in serum EVs from patients with TBI, and their association with biperiden treatment and PTE. Blood samples of 37 TBI patients were collected 10 days after trauma and treatment initiation in a double-blind clinical trial. A total of 18 patients received biperiden, with three subjects developing PTE, and 19 received placebo, with two developing PTE. Serum EVs were characterized by size distribution and protein profiling, followed by high-throughput sequencing of the EV miRNome. Differential expression analysis revealed no significant differences in miRNA expression between TBI patients with and without PTE. Interestingly, miR-9-5p displayed decreased expression in biperiden-treated patients compared to the placebo group. This miRNA regulates genes enriched in stress response pathways, including axonogenesis and neuronal death, relevant to both PTE and TBI. These findings indicate that biperiden may alter miR-9-5p expression in serum EVs, which may play a role in TBI resolution.

2.
Transl Psychiatry ; 13(1): 47, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746925

ABSTRACT

Extracellular vesicles (EVs) are present in numerous peripheral bodily fluids and function in critical biological processes, including cell-to-cell communication. Most relevant to the present study, EVs contain microRNAs (miRNAs), and initial evidence from the field indicates that miRNAs detected in circulating EVs have been previously associated with mental health disorders. Here, we conducted an exploratory longitudinal and cross-sectional analysis of miRNA expression in serum EVs from adolescent participants. We analyzed data from a larger ongoing cohort study, evaluating 116 adolescent participants at two time points (wave 1 and wave 2) separated by three years. Two separate data analyses were employed: A cross-sectional analysis compared individuals diagnosed with Major Depressive Disorder (MDD), Anxiety disorders (ANX) and Attention deficit/Hyperactivity disorder (ADHD) with individuals without psychiatric diagnosis at each time point. A longitudinal analysis assessed changes in miRNA expression over time between four groups showing different diagnostic trajectories (persistent diagnosis, first incidence, remitted and typically developing/control). Total EVs were isolated, characterized by size distribution and membrane proteins, and miRNAs were isolated and sequenced. We then selected differentially expressed miRNAs for target prediction and pathway enrichment analysis. In the longitudinal analysis, we did not observe any statistically significant results. In the cross-sectional analysis: in the ADHD group, we observed an upregulation of miR-328-3p at wave 1 only; in the MDD group, we observed a downregulation of miR-4433b-5p, miR-584-5p, miR-625-3p, miR-432-5p and miR-409-3p at wave 2 only; and in the ANX group, we observed a downregulation of miR-432-5p, miR-151a-5p and miR-584-5p in ANX cases at wave 2 only. Our results identified previously observed and novel differentially expressed miRNAs and their relationship with three mental health disorders. These data are consistent with the notion that these miRNAs might regulate the expression of genes associated with these traits in genome-wide association studies. The findings support the promise of continued identification of miRNAs contained within peripheral EVs as biomarkers for mental health disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Depressive Disorder, Major , Extracellular Vesicles , MicroRNAs , Humans , Adolescent , MicroRNAs/genetics , MicroRNAs/metabolism , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/metabolism , Cohort Studies , Cross-Sectional Studies , Depression , Genome-Wide Association Study , Anxiety Disorders/genetics , Anxiety Disorders/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism
3.
Genes Brain Behav ; 22(2): e12838, 2023 04.
Article in English | MEDLINE | ID: mdl-36811275

ABSTRACT

Neuroimaging studies suggest that brain development mechanisms might explain at least some behavioural and cognitive attention-deficit/hyperactivity disorder (ADHD) symptoms. However, the putative mechanisms by which genetic susceptibility factors influence clinical features via alterations of brain development remain largely unknown. Here, we set out to integrate genomics and connectomics tools by investigating the associations between an ADHD polygenic risk score (ADHD-PRS) and functional segregation of large-scale brain networks. With this aim, ADHD symptoms score, genetic and rs-fMRI (resting-state functional magnetic resonance image) data obtained in a longitudinal community-based cohort of 227 children and adolescents were analysed. A follow-up was conducted approximately 3 years after the baseline, with rs-fMRI scanning and ADHD likelihood assessment in both stages. We hypothesised a negative correlation between probable ADHD and the segregation of networks involved in executive functions, and a positive correlation with the default-mode network (DMN). Our findings suggest that ADHD-PRS is correlated with ADHD at baseline, but not at follow-up. Despite not surviving for multiple comparison correction, we found significant correlations between ADHD-PRS and segregation of cingulo-opercular networks and DMN at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation. These directions of associations corroborate the proposed counter-balanced role of attentional networks and DMN in attentional processes. However, the association between ADHD-PRS and brain networks functional segregation was not found at follow-up. Our results provide evidence for specific influences of genetic factors on development of attentional networks and DMN. We found significant correlations between polygenic risk score for ADHD (ADHD-PRS) and segregation of cingulo-opercular networks and default-mode network (DMN) at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Connectome , Child , Adolescent , Humans , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Neural Pathways/diagnostic imaging , Brain/diagnostic imaging , Risk Factors , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...