Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 19(6): e202101036, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35581163

ABSTRACT

The successful application of fragment-based drug discovery strategy for the efficient synthesis of phenoxy- or phenylamino-2-phenyl-benzofuran, -benzoxazole and -benzothiazole quinones is described. Interestingly, in the final step of the synthesis of the target compounds, unusual results were observed on the regiochemistry of the reaction of bromoquinones with phenol and aniline. A theoretical study was carried out for better understanding the factors that control the regiochemistry of these reactions. The substituted heterocyclic quinones were evaluated in vitro to determine their cytotoxicity by the MTT method in three pancreatic cancer cell lines (MIA-PaCa-2, BxPC-3, and AsPC-1). Phenoxy benzothiazole quinone 26a showed potent cytotoxic activity against BxPC-3 cell lines, while phenylamino benzoxazole quinone 20 was the most potent on MIA-PaCa-2 cells. Finally, electrochemical properties of these quinones were determined to correlate with a potential mechanism of action. All these results, indicate that the phenoxy quinone fragment led to compounds with increased activity against pancreatic cancer cells.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Antineoplastic Agents/chemistry , Benzothiazoles/chemistry , Cell Line, Tumor , Humans , Pancreatic Neoplasms/drug therapy , Quinones/chemistry , Quinones/pharmacology , Pancreatic Neoplasms
2.
ChemSusChem ; 8(22): 3897-904, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26383015

ABSTRACT

The electrochemical reduction of carbon dioxide is studied herein by using conducting polymers based on metallotetraruthenated porphyrins (MTRPs). The polymers on glassy carbon electrodes were obtained by electropolymerization processes of the monomeric MTRP. The linear sweep voltammetry technique resulted in polymeric films that showed electrocatalytic activity toward carbon dioxide reduction with an onset potential of -0.70 V. The reduction products obtained were hydrogen, formic acid, formaldehyde, and methanol, with a tendency for a high production of methanol with a maximum value of turnover frequency equal to 15.07 when using a zinc(II) polymeric surface. Studies of the morphology (AFM) and electrochemical impedance spectroscopy results provide an adequate background to explain that the electrochemical reduction is governed by the roughness of the polymer, for which the possible mechanism involves a series of one-electron reduction reactions.


Subject(s)
Carbon Dioxide/chemistry , Carbon/chemistry , Electric Conductivity , Metalloporphyrins/chemistry , Polymers/chemistry , Catalysis , Electrochemistry , Methanol/chemistry , Models, Molecular , Molecular Conformation , Polymerization , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...